
 Version 4 1

OpenServer Kernel Personality (OKP)

White Paper

March, 2004

 Version 4 2

Overview of OpenServer Kernel Personality (OKP)
OpenServer Kernel Personality for SCO UnixWare enables installation and
native execution of OpenServer applications on SCO UnixWare. OKP combines
the UnixWare Application Compatibility Package with a full OpenServer
environment to provide the highest level of compatibility with OpenServer
applications.

A UnixWare system with OKP can run a wide range of OpenServer programs.
Programs like Communicator and Mozilla and tools that are unique to
OpenServer - including SCOterm, SCOsh, and SCOpaint - function perfectly.
Applications available only for Xenix, such as Megabasic and Progress 7 also run
using OKP.

OKP harnesses the power and scalability of a single UnixWare system to run
OpenServer and UnixWare applications side-by-side. The benefits of this
approach are:

• The OKP feature can be used to reduce operating expenses by
implementing a low-risk server consolidation project.

• Running OpenServer applications on OKP gives you the option of the
failover clustering available with ReliantHA® on UnixWare.

• OKP may increase the performance of existing OpenServer applications
because up to 32 processors per system are supported with OKP on
UnixWare.

• With OKP on UnixWare you can continue to use you existing applications
while taking advantage of UnixWare's support for new hardware.

Application Compatibility Package
The base UnixWare operating system already runs OpenServer binaries through
its Enhanced Application Compatibility package (ACP). In addition, UnixWare
includes a selection of OpenServer tools and utility programs in its
/OpenServer/bin directory, along with supporting libraries in /OpenServer/lib and
/OpenServer/usr/lib.

At first glance, it appears that UnixWare is fully capable of running any
OpenServer application without any further "tweaking". However, ACP does
have limitations:

• Limited OpenServer environment
• Difficult to upgrade
• Lack of migration tools

OKP addresses these limitations by providing a more complete OpenServer
environment.

 Version 4 3

Limited OpenServer environment
Whenever an OpenServer program runs, UnixWare must make sure that it links
the correct shared libraries. ACP handles this by pre-pending the shared library
search path with /OpenServer when an OpenServer program is detected.

This is a reasonable approach for simple cases, but starts to break down where
libraries exist in UnixWare, but not in OpenServer. In some cases ACP will find
the wrong library because there is no strong separation of the UnixWare and
OpenServer environment.

Both UnixWare and OpenServer binaries specify /usr/lib/libc.so.1 as their ELF
interpreter, the kernel can't readily tell an OpenServer binary from a UnixWare
one. So it hands both to the main system libc. This library has the job of trying to
detect an OpenServer program, and on seeing one, shunts control to the
OpenServer C library located in the /OpenServer directory.

Difficult to upgrade
To make things even more complicated, this approach needs UnixWare's libc
and the OpenServer libc in /OpenServer/usr/lib to cooperate. This brings us to
another limitation of ACP, ease of upgrading.

ACP’s use of the /OpenServer directory to store special versions of libraries also
creates an update headache. A patch or upgrade for OpenServer can be applied
to OpenServer's C libraries when installed on an OpenServer system. This same
patch cannot, however, be applied to UnixWare's /OpenServer directory, often
meaning that UnixWare's /OpenServer/usr/lib/libc.so.1 is doomed to be almost
perpetually out of date. This breaks support for any applications that require the
latest of OpenServer's C library. To upgrade an administrator must manually
copy updated C libraries to the /OpenServer directory, then create any necessary
links. This method is tedious, and error prone.

Lack of migration tools
ACP doesn’t have tools to ease the transition of applications from OpenServer to
UnixWare. All configuration and installation tasks associated with installing an
application will have to be done manually. This might also include making many
links between libraries in the /OpenServer directory to where the applications
libraries are located. It is not as simple as just directly copying files from an
OpenServer server to the new UnixWare server.

Benefits of the OKP Approach

 Version 4 4

OKP addresses the pitfalls and limitations of ACP through the following:
• OKP reworks user level ACP
• OKP extends the kernel level ACP
• Uname is modified.

OKP reworks user level ACP

The user level ACP uses the same environment as UnixWare, so to solve any
library conflicts, OKP creates a clean user-space environment using the chroot
utility. This same method is used by the Linux Kernel Personality (LKP) to
separate its operating environment from UnixWare's. There is a directory,
/openserver, created on an OKP system which is similar to the /linux directory

used for LKP. The /openserver directory contains a complete copy of a whole
OpenServer system root directory. In this way, OKP sidesteps the entire user-
space C library shunting that happens in ACP. Like any other OpenServer
binary, these tools are not aware that they are not running on native OpenServer.
This lets the user take advantage of many features of native OpenServer. For
example, OpenServer init scripts run without modification.

OpenServer style internationalization and localization are mapped to the
corresponding UnixWare 7 locales by the openserver command used to execute
OpenServer applications under OKP. This creates a complete OpenServer
environment, and increases application compatibility.

 Version 4 5

The directory is named /openserver for consistency with LKP, but this can be
confusing. It is very easy to mix up /openserver and /OpenServer. However, it is
necessary to have both directories as the first is OKP's compatibility directory;
the second is ACP's.

OKP extends kernel level ACP
This approach by OKP also retains all of the kernel level pieces of ACP. In fact,
it absolutely relies on them. An OpenServer program running under OKP must
see the same special behaviors from the kernel that programs see when running
under ACP. Even though an application is run from the OpenServer environment,
the executable is still handed to the UnixWare kernel for execution. It is up to the
kernel to determine if the application is an OpenServer or UnixWare executable.
The kernel does this automatically after it reads the executable's header
information. From the header information the kernel knows if the executable is a
COFF binary, or an OpenServer ELF binary. Once the kernel has determined the
executable is an OpenServer executable, the ACP kernel routines are used to
execute the binary.

Modifying Uname

Uname is a system call that a process can use to find out details about the
system it is running on. OpenServer processes should not even be aware that
they are not running on native OpenServer. UnixWare's uname returns
OpenServer-like results for OpenServer processes that call it.

So now we have a system which allows us to change root into
/openserver, and from in here, run OpenServer binaries seamlessly. We use the
kernel compatibility part of UnixWare's ACP, but the user-space parts are
ignored, staying well away from the /OpenServer/usr/lib ACP OpenServer
libraries.

Software Development Model
OKP makes it possible to develop and deploy applications on systems larger
than the current scalability limits for OpenServer. Applications can take
advantage of UnixWare's excellent device support, support for up to 32
processors per system, increased file sizes, up to 16 GB of memory, and a multi
threaded journaling file system. It also allows an application to take advantage of
several high availability applications, such as ReliantHA®, to provide a higher
level of application, system and data availability. All this can be accomplished
without having to port applications to a new platform. You can move forward and
plan for the future of your infrastructure while still being able to run existing
OpenServer or legacy Xenix application suites.

 Version 4 6

Application Compatibility
A large number of OpenServer applications will be able to run on OKP without
configuration changes. There are some cases where an OpenServer application
will not run correctly on OKP. The most common reason is that OpenServer and
UnixWare handle hardware devices differently. OKP relies on UnixWare's
hardware drivers. For example the custom utility, when invoked in the OKP
environment, cannot directly access a CDROM drive. The work around this
problem is to mount the CDROM device in a UnixWare shell before invoking
custom from the OpenServer environment. To mount the CDROM device so it is
visible to OKP, you can use the following command:

/sbin/mount /dev/cdrom/cdrom1 /openserver/mnt

Another case where some configuration changes may need to be made is when
running terminal based OpenServer applications. Several text based applications
do not display correctly on OKP due to differences between the UnixWare and
OpenServer terminal settings. Key-mappings might not correct for these
applications as well. There are several ways to fix this problem, should it come
up. The first is to change the default console font using the following command:

mv /etc/default/cofont /etc/default/confont.old

Several other terminal settings may also need to be changed to get the
application to display correctly. Configuring the terminal settings is beyond the
scope of this document. For more information refer to the SCO support page:
http://www.thescogroup.com/support.

To solve the keyboard mapping problems use the scostrings keyboard mappings
as the default keyboard map:

mv /usr/lib/keyboard/strings /usr/lib/keyboard/strings.old
cp /usr/lib/keyboard/scostrings /usr/lib/keyboard/strings

The above commands will change how the keyboard works with regular
UnixWare applications. This is a current limitation that we plan to address in
future versions of OKP.

Another known limitation is that any Administration utility written to use the
OpenServer scoadmin interface will have to be re-written to UnixWare's
scoadmin interface. This includes the graphical and non-graphical Administration
interface.

In addition to the scoadmin utilities several common OpenServer utilities check
for a valid OpenServer license before they will run. These applications include:

 Version 4 7

make, the calendar daemon, and the OpenServer desktop Xdt3.
These programs will not currently work under OKP on UnixWare because the
UnixWare licensing daemon, pmd, is operating on the system. Because the
UnixWare pmd is holding the licensing socket, the OpenServer pmd is unable to
run under OKP. The UnixWare pmd is unable to process requests from
OpenServer applications. OpenServer's pmd is also unable to run under OKP
because it needs some low-level information off the disk that UnixWare doesn't
provide.

There are other cases where an OpenServer application will not work under
OKP. The quickest way to see what is causing the application to not start, or
work correctly is to use the osrtruss utility. To run an application under
osrtruss from a UnixWare shell:

cd /openserver/<app_path>
osrtruss -f [truss_options] openserver "./myapp arg1 arg2 ..."

For more information on the osrtruss and truss command refer to the
truss(1) manual page. For the latest fixes and solutions to problems refer to
the SCO Support page: http://www.thescogroup.com

Device Compatibility
There has been some specific discussion on issues with certain applications and
devices, however more generally OKP for UnixWare 7 supports all hardware
currently supported by UnixWare 7 using existing drivers. Usually, accessing the
device is transparent to the OpenServer application, however some applications
use direct connections to devices. An example of this is an application accessing
third-party multi-port serial devices. If there is a driver for the device for UnixWare
then OKP should be able to access the device using the standard /dev file
interface. Sometimes a hard link is necessary from the device file in the /dev
directory to the device file the /openserver/dev directory. This allows the
application to access the device file when running under chroot. Most of the time
creating hardlinks between device files is not necessary as OpenServer I/O
activities are mapped from the OpenServer system call via the device/kernel
interface to UnixWare 7 I/O events.

As mentioned before OKP relies upon UnixWare hardware support for its
hardware support. Hardware drivers written for OpenServer will not work using
OKP. If special hardware is required to run an OpenServer application, before
migrating to OKP, check to see if a hardware driver is available for UnixWare.

Operation
There are two general ways an OpenServer program is run on an OKP system.

 Version 4 8

The first is to start an OpenServer terminal, which creates an environment which
is very similar to a native OpenServer environment. The second is to pass the
application and arguments to the openserver command. Examples of these
two methods are shown below.

Note: Now we will have to differentiate between the UnixWare terminal and the
OKP terminal. For the UnixWare terminal the “$” symbol will be used. For the
OpenServer terminal “[openserver]” will be used.

$ openserver
[openserver] cd application_path
[openserver] ./command arg1 arg2 ...

where application_path is the path to the application's startup directory, and
command starts the applications. When you use the openserver command in
this manner the root directory is changed to the /openserver directory, and the
/openserver/etc/profile file is read to configure the environment. In the example
above if the command is a directory specified by the $PATH environmental
variable, then after entering the [openserver] terminal you would just have to
enter the command.

For the convenience of launching applications from scripts the method to launch
an OpenServer application is slightly different. For example to launch command
from a script the following commands would be entered:

cd /openserver/application_path
openserver ./command arg1 arg2 ...

If the application is not part of the OpenServer image used to populate the
/openserver directory, you can use OpenServer tools to install the application on
OKP. Use ‘custom’ to install application packaged with ‘custom’ or CDMT. The
OpenServer versions of tar and cpio are available from within OKP. Finally, for
installing pkg* utilities use the native UnixWare pkgadd command.

For additional details on running applications using OKP refer to the OKP
documentation which is part of the SCOhelp documentation system.

XENIX EMULATION
UnixWare cannot directly run Xenix binaries. However, some OpenServer
applications really turn out to be Xenix applications, or sometimes contain a
mixture of OpenServer and Xenix binaries. OKP uses the following process to
cope with this:

 Version 4 9

Lcall7 call gate overload
OKP carries around a UnixWare kernel module, xout, whose job is to interface
with the user space Xenix emulator. The kernel module is very small, and has
two short, but very important, jobs to do:

 It checks the magic number of the binary (the first two bytes) for the
 value 0x0206. If it finds this value, the binary is a Xenix one, so
 the user space Xenix emulator is invoked to run the binary. It
 opens an additional call gate for system calls at 0x37, in effect lcall37.
 This operates in parallel with lcall7. Lcall37 is an alias for lcall7;
 that is, both call gates transfer control to exactly the same location
 inside the kernel, in this case, the main system call handler function.

User space emulator
OKP comes with a user space Xenix emulator, /usr/bin/xrun, linked to
/usr/bin/xemul. This is the program that the xout kernel module runs.

The emulator's first job is to redirect its own lcall7 call gate so that it
points to a function inside its own code, not to the UnixWare kernel's system call
handler. In this way it becomes its own system call hander.

Of course, this is not going to work unless the emulator has access to real
system calls, and this is where the extra call gate, lcall37, comes in. The
emulator redirects real system call requests to lcall37, and catches system call
requests from the Xenix binary to lcall7. It becomes a system call "filter",
catching, modifying if necessary, and passing on, system calls from Xenix
binaries. It catches system calls to lcall7, and passes them on to lcall37.

The Xenix emulator is also responsible for memory mapping and segmentation
on behalf of the Xenix program. It works very much like the LKP kernel module,
except for the very real difference that it is not actually in the kernel.

For more information on xemul refer to the xemul(1) manual page.

Bypassing selected file permissions
If a user has execute permission for a binary file or a script, they should be able
to run it, even if they have no read permission. However, the Xenix emulator
needs to be able to read in a Xenix binary before it can run it. To do this
successfully, it may need to bypass read permission for the file, in effect treating
execute permission as read permission.

Running full OpenServer application suites
Once a Xenix program is loaded into the emulator, it runs as a first-class

 Version 4 10

system process. The UnixWare kernel does not differentiate between Xenix and
UnixWare processes. In fact, the kernel really cannot tell the difference because
the emulator is UnixWare code, and it is that code which is making all of the
system calls.

Limitations of OKP
Some limitations of OKP have already been discussed, however when
considering a migration to OKP some other items have to be considered.

Mail services
OpenServer mail services will not work under OKP, except for mail delivered to a
local mailbox (i.e., on the same system). Mail services should be configured and
administered under UnixWare using UnixWare utilities. Use one of the UnixWare
mailers (pine, mailx, etc.) to send and receive mail.

File Systems
UnixWare 7 file system types are used for OKP. In the migration process, user
data files are copied onto native UnixWare 7 file systems. Note that no direct
access to OpenServer HTFS and DTFS filesystem architectures is provided
under OKP. If an OKP application calls a filesystem administration command
such as mount, mkfs, or fsck, the native UnixWare 7 version of the command is
called rather than the OpenServer version.

Graphics
• scoterm is unable to run in scancode mode.
• Most application pixmaps, bitmaps, and masks from SCO OpenServer will not

work.
• Motif User Interface Language (UIL) files are not portable from SCO

OpenServer.
• Applications using IXI Drag and Drop will not work.
• The scoforeground/scobackround X resources from SCO OpenServer are not

available.
• Some keyboard definitions provided by SCO OpenServer applications may not

work.

Mass storage drivers
Some devices that were supported in SCO OpenServer may not be supported in
UnixWare 7. These may include low-end non-SCSI devices such as floppy-tape.
Support for such devices may be available from third parties, but this is not
guaranteed. Devices that conform to SCSI or IDE/Atapi, with the exception of
IDE Tape, should work in UnixWare 7. In addition:

 Version 4 11

• Device naming conventions are different in UnixWare 7 and compatibility of

device node names is not guaranteed.
• Device drivers are not compatible.
• Mass storage ioctls are different in UnixWare 7.
• A different set of mass storage commands is provided.

Conclusion
OKP allows a business to leverage the power, scalability and availability of
UnixWare while continuing to support existing OpenServer and Xenix
applications. This method is very cost effective as the business does not need to
incur the added cost of porting applications and data to UnixWare. Also, without
the wait of porting applications and data, this solution is ready to go now, and can
be implemented without a large amount of downtime. For more detailed
information on running OKP refer to the OKP documentation, which is part of the
SCOhelp system.

