
Debug for GDB Users

Basic Process Control

To be useful, a debugger must be capable of basic process control. This functionally allows the user to
create a debugging session and instruct the process what to do next.

Action Description Debug GDB

Creating Creating a debug
session for a program

$debug <program> <args>

>create <program> <args>

(note that the program
arguments are provided here
on process creation)

$gdb <program>

>file <program>

Grabbing Grabbing an already
executing program

$debug <pid>

>grab <pid>

$gdb program <pid>

>attach <pid>

(use the file command to load
the program if attach cannot
find the program in your
search path)

Releasing Release a debugged
program >release >detach

Core
Analyzing a core file
generated by a buggy
program

$debug -c <core> <program>

>grab -c <core> <program>

$gdb <program> <core>

>target core <core>

Executing Executing a program >run

>run <args>

(note that ther progran
arguments are given now)

Halting
Halting a program that
is executing under the
control of the debugger

<Ctrl-C>

>halt
<Ctrl-C>

Continuing
Continuing a program
execution after it has
been halted

>run >cont

Stepping

Continue program
execution to the next
line of source and
follow a function call if
necessary

>step >step

Page 1 of 5Getting Started

6/7/2006ftp://lego.nj.sco.com/pub/incoming/jwolfe/Debug_for_GDB_Users.html

Basic Process Manipulation

Process manipulation, the core of a debugger, indicates when a process is to stop execution. This break
in execution allows the user to examine the process state at known locations or when data is altered or
accessed.

Next

Continue executon to
the next line of source
and do not follow a
function call

>step -o

>next
>next

Return
Continue execution until
the end of the current
function

>run -r >finish

Machine
code step

Continue execution to
the next machine code
instruction and follow a
function call if
necessary

>step -i

>si

>stepi

>si

Machine
code next

Continue execution to
the next machine
instruction and do not
follow a function call

>step -io

>ni

>nexti

>ni

Terminating
Stopping an program
and then terminating its
execution

<Ctrl-C>
(if no command prompt)

>kill

>kill

Quitting Exiting the debugger >quit >quit

Action Description Debug GDB

Breakpoints

Setting a breakpoint at a
specific program
location, halt program
execution at that point

>stop <expression>

>stop <filename@line>

break <expression>

>break <filename:line>

Temprary
breakpoints

Setting a breakpoint that
is cleared after being
reached once

N / A >break <expresson>

Regular
expression
breakpoint

Setting a breakpoint on
all functions that match
the regular expression

N / A >break <regex>

Watchpoint

Set a breakpoint that is
activated when the value
of a variable ot memory
area is changed

>stop *(expr) >watch <expression>

Breakpoint
list

Provide a list of set
>stop

>info breakpoints

>info break

Page 2 of 5Getting Started

6/7/2006ftp://lego.nj.sco.com/pub/incoming/jwolfe/Debug_for_GDB_Users.html

Events and Signals

Program execution can generate events a debugger can recognize. Some of these events are forks, execs,
throw, catch and signals. Signals all a program to respond via a handler.

Process Thread Control

A process can sometimes have simultaneous, different paths of execution. This capability is particularly
useful for multi-processor machines. Thread control allows the user to deal with these different
execution paths.

Multiple Processes

Debug is able to debug several processes at once. This feature is particularly useful if a program
undergoing debugging consists of several independently running processes. Unfortunately GDB can
debug onl one process at a time.

breakpoints >info watchpoint

Action Description Debug GDB

Signal list
List the debugger's
approach to handling
signals

>signal >info signals

Signal
ignore

Ignore a signal and pass
it straight to the program >signal -io <signal> >handle <signal> nostop

Signal
intercept

Intercept the signal
before it is passed onto
the program and halt
program execution

>signal <signal> >handle <signal> stop

Action Description Debug GDB

Thread list
Provide information
about the available
threads

>ps >info threads

Thread
switch

Switch to a selected
thread >set %thread <thread no.> >thread <thread no.>

Thread
command

Applying a debugger
command to a thread,
list of threads or all

>command -p <thread no.>
[,<thread no.>]*

>command -p all

>thread apply <thread no>.
<args>

>thread apply all <args>

Action Description Debug GDB

Process
list

List the current
processes being
debugged

>ps N / A

Execute a debugger

Page 3 of 5Getting Started

6/7/2006ftp://lego.nj.sco.com/pub/incoming/jwolfe/Debug_for_GDB_Users.html

The Stack

To determine the function call path to the current position in the program, the user needs to examine the
stack. A stack consists of frames, and each frame is associated with a function call. Typically, the user
needs to view the full stack and possibly navigate through the stack. A user is able to examine each
stack frame's register values, function call arguments, and local variables.

Additional Commands

The commands shown next can help you complete the debugging commands mentioned previously.

Process
specific
command

command for a specific
process only

><command> -p <proc no>. |
all <args> N / A

Process
current

Make a particular
process the current
process

>set %proc <proc no.> N / A

Action Description Debug GDB

Stack trace Display the framces of
the stack

>stack

>t

>backtrace

>bt

Change current
frame

Change the current
frame to another in the
stack

>set %frame <frame no.> frame <frame no.>

Up Move up the stack >set %frame %frame - 1 >up
Down Move down the stack >set %frame %frame + 1 >down

Local Variables Display the values of
the local variables >symbols -l >info local

Functionarguments
Display the vlaues of
the function
arguments

>stack -c 1 >info args

Action Description Debug GDB

List Source List the program source
>list

>list <expr>

>list

>list <expr>

Register
values

Display the values of the
registers of the current
stack frame

>regs
>info registers

>info all-registers

Register
names

The names of the
registers that can be used
in debugging
expressions

%<register> $<register>

Disassembly List machine code >dis >assemble

Page 4 of 5Getting Started

6/7/2006ftp://lego.nj.sco.com/pub/incoming/jwolfe/Debug_for_GDB_Users.html

instructions

Page 5 of 5Getting Started

6/7/2006ftp://lego.nj.sco.com/pub/incoming/jwolfe/Debug_for_GDB_Users.html

