
SG24-5850-00

International Technical Support Organization

www.redbooks.ibm.com

Linux for WebSphere and DB2 Servers

Jakob Carstensen, Herman Chen, Doug Marker, Dan Cornell, Paul Zikopoulos

Linux for WebSphere and DB2 Servers

October 1999

SG24-5850-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (October 1999)

This edition applies to the following products:

• WebSphere Application Server 2.0.3

• DB2 Universal Database 6.1

• VisualAge for Java 3.0 (technical evaluation)

• IBM HTTP Server

• Apache Web Server 1.3.6

• IBM Java JDK 1.16

• Blackdown JDK 1.17 V.3

• Caldera OpenLinux 2.2 and 2.3

• Red Hat Linux 6.0

• SuSE Linux 6.1

• TurboLinux 3.6

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix B, “Special notices” on page 275.

Take Note!

This book is based on a pre-GA version of a product and may not apply when the product becomes
generally available. We recommend that you consult the product documentation or follow-on versions
of this redbook for more current information.

Note

Contents

Preface .ix
The team that wrote this redbook. x
Comments welcome. xii

Part 1. Introduction . 1

Chapter 1. The Linux operating system . 3
1.1 Commercializing Linux . 3
1.2 Best things on the Internet are free? . 4
1.3 Linux performance, stability, and security . 5
1.4 Ease of use . 5

1.4.1 Summary . 7

Chapter 2. IBM’s commitment to Linux . 9

Chapter 3. The IBM Application Framework for e-business. 11
3.1 e-business: merging the Internet and IBM technology 11
3.2 Foundations of the IBM Application Framework for e-business 12
3.3 Java everywhere . 13
3.4 Connectors are bridges between networks . 14

3.4.1 Some key reasons for using connectors 15
3.5 Service modules in the Application Framework for e-business 16

3.5.1 The e-business application services . 17
3.5.2 The Web application programming model using IBM software . . 17
3.5.3 Summary . 18

Chapter 4. WebSphere, VisualAge for Java and DB2 19
4.1 Foundation of the IBM Application Framework for e-business 19
4.2 VisualAge for Java . 20

4.2.1 Methods of delivery . 20
4.3 IBM WebSphere Application Server . 21
4.4 DB2 Universal Database- the foundation for e-business 22

Chapter 5. Hardware and software setup . 23
5.1 Initial setup guidelines . 24

5.1.1 Recommended install sequence checklist. 25
5.2 Hardware setup . 25

5.2.1 Netfinity 3000 . 26
5.2.2 Netfinity 5000 . 26

5.3 Lab LAN setups . 26
5.4 Linux - installation and configuration . 28
© Copyright IBM Corp. 1999 iii

5.4.1 Installing Linux . 28
5.4.2 Graphics adapter setup . 29

5.5 Product installation preparation . 30
5.6 Java - Installation and configuration . 30

5.6.1 Java install steps . 31
5.6.2 Java testing and setup . 31

5.7 Apache - installation and configuration . 32
5.7.1 IBM HTTP Server install steps . 33
5.7.2 Testing Apache . 34
5.7.3 Setting up IBM HTTP Server startup script 35
5.7.4 Getting IBM HTTP Server (apachectl) to start at boot time 36
5.7.5 Detecting Apache problems . 38

5.8 Installing and configuring DB2 Universal Database 39
5.9 Before you begin . 39

5.9.1 Caldera OpenLinux Version 2.2 or Version 2.3 40
5.9.2 Red Hat Linux Version 5.2 or Version 6.0 42
5.9.3 TurboLinux Version 3.6. 42
5.9.4 SuSE Linux Version 6.1 . 42

5.10 Performing the installation . 43
5.10.1 Verifying the installation . 47

5.11 Deinstalling DB2 Universal Database . 48
5.11.1 Step 1. Stop and remove the Administration Server 48
5.11.2 Step 2. Stop and remove any instances 49
5.11.3 Step 2. Deinstall DB2 . 50

5.12 WebSphere Application Server - installation and configuration 51
5.12.1 WebSphere install steps . 52

5.13 VisualAge for Java for Linux - installation and configuration 58

Part 2. Programming model . 61

Chapter 6. Web programming model . 63
6.1 Overview of Java servlets. 63

6.1.1 Advantages of servlets . 64
6.2 Structure of the Java servlets . 66

6.2.1 Interface javax.servlet.Servlet. 67
6.2.2 Interface javax.servlet.ServletConfig . 67
6.2.3 Interface javax.servlet.ServletContext. 68
6.2.4 Interface javax.servlet.ServletRequest . 68
6.2.5 Interface javax.servlet.ServletResponse 69
6.2.6 Interface javax.servlet.http.HttpServletRequest 69
6.2.7 Interface javax.servlet.http.HttpServletResponse 69
6.2.8 javax.servlet.GenericServlet . 70
6.2.9 Class javax.servlet.ServletInputStream. 70
iv Linux for WebSphere and DB2 Servers

6.2.10 Class javax.servlet.ServletOutputStream 70
6.2.11 Class javax.servlet.http.HttpServlet . 71
6.2.12 Class javax.servlet.http.HttpUtils . 71
6.2.13 Exception javax.servlet.ServletException 72
6.2.14 Exception javax.servlet.UnavailableException 72

6.3 Java Servlets Development Kit from Sun . 72
6.4 WebSphere Application Server Servlets API extensions 72
6.5 Servlets with JSPs . 74

6.5.1 JavaServer Page (JSP) Overview. 74
6.5.2 Advantages of JSP . 75
6.5.3 JavaServer Page Specification . 75
6.5.4 HTML template syntax for variable data 79
6.5.5 JavaServer Page API . 84
6.5.6 Preventing Web page caching . 85

Chapter 7. Servlet programming model . 89
7.1 Issues with CGI scripts and Web server API extension. 89
7.2 CGI scripts, API extensions and servlets - life cycles 90

7.2.1 CGI scripts - life cycle. 91
7.2.2 API extension - life cycle . 91
7.2.3 Summary of a servlet . 92
7.2.4 Servlet life cycle . 93

7.3 Environment variables in CGI versus Servlets 95
7.4 Servlet threading - reentrancy of servlets . 97
7.5 Programming WebSphere’s servlet API extensions 98

7.5.1 DB connection pooling. 101
7.5.2 Session management . 105

7.6 Servlet programmming under a microscope 108
7.6.1 Using GenericServlet class versus HttpServlet class 108
7.6.2 GET/POST processing in servlets . 108
7.6.3 The init(), service(), and destroy() methods 112
7.6.4 Parameters passed by the server . 116

7.7 Migrating from a CGI base to servlets . 117
7.7.1 Migration - decisions criteria . 117
7.7.2 Migration - an approach . 118

Part 3. WebSphere and design patterns for e-commerce . 119

Chapter 8. WebSphere Application Server technology 121
8.1 WebSphere Application Server security . 121

8.1.1 WebSphere Application Server security management. 122
8.1.2 Realms . 125
8.1.3 Users . 129
v

8.1.4 Groups . 137
8.1.5 Access control lists . 141
8.1.6 Resources . 153
8.1.7 Examples of Security Using HTTP and SSL 156

8.2 Enterprise JavaBeans . 174
8.2.1 EJB Structure . 175

8.3 Extensible Markup Language (XML) . 177
8.3.1 XML Parser . 178
8.3.2 Document Object Model (DOM) . 178
8.3.3 Simple API for XML (SAX) . 180

Chapter 9. Servlet design patterns for e-commerce. 183
9.1 Guiding principles. 183
9.2 High-level design patterns . 183

9.2.1 Single function servlets. 183
9.2.2 Tiered topology. 184
9.2.3 Separation of processing and display responsibilities 188

9.3 Specialized applications . 188
9.3.1 Personalization. 188
9.3.2 Asynchronous event processing using threads 189
9.3.3 Utilizing an e-commerce event model . 190
9.3.4 Leveraging the HTTP protocol in servlet-based applications. . . 191
9.3.5 Structuring parameter names and values 191
9.3.6 Non-cookie-based state maintenance . 192
9.3.7 Servlet-based cron facility . 192
9.3.8 Dynamically generated images . 193
9.3.9 HTML components to aid in JSP processing. 194
9.3.10 Summary . 195

Part 4. DB2 Universal Database . 197

Chapter 10. Accessing DB2 data . 199
10.1 Accessing DB2 data from remote clients over a LAN connection . . 200
10.2 Accessing host or AS/400 DB2 data over a LAN connection. 200
10.3 Accessing DB2 data from the Web using java 203

Part 5. Sample Scenarios . 207

Chapter 11. Sample Java JDBC programs . 209
11.1 Script of javaprofile. 211
11.2 Script of db2profile . 212
11.3 Java program DB2appProgram1.java . 214
11.4 Java program DB2netProgram1.java . 219
vi Linux for WebSphere and DB2 Servers

Chapter 12. Sample servlets without ConnMgr 225
12.1 App DB2 servlet - DB2appServlet1.java . 228
12.2 Net DB2 servlet - DB2netServlet1.java . 235

Chapter 13. Sample servlets using ConnMgr 245
13.1 App DB2 servlet - DB2appServlet2.java . 248
13.2 Net DB2 servlet - DB2netServlet2.java . 255

Appendix A. Installing IBM HTTP Server Beta 3 with SSL 265
A.1 IBM HTTP Server . 265

A.1.1 SSL Protocol. 265
A.1.2 Install IBM HTTP Server . 265
A.1.3 Installing global security kit (GSK) . 266
A.1.4 Install IBM SSL modules. 266

A.2 Prepare Server Certificate . 267
A.2.1 Creating a key database . 267
A.2.2 Create a self-signed certificate . 268

A.3 Register key database with IBM HTTP Server . 269

Appendix B. Special notices . 275

Appendix C. Related resources . 279
C.1 Redbooks on CD-ROMs . 279
C.2 Referenced Web sites . 279

How to get ITSO redbooks . 283
IBM redbook fax order form . 284

List of abbreviations . 285

Index . 287

ITSO redbook evaluation . 291
vii

viii Linux for WebSphere and DB2 Servers

Preface

This redbook describes how to implement WebSphere Application Server,
DB2 Universal Database, VisualAge for Java, Apache Web Server and IBM
HTTP Server on the Linux operating system. We use four different
distributions of the Linux operating system: Caldera OpenLinux, Red Hat
Linux, SuSE Linux and TurboLinux.

Furthermore the book provides a discussion of Java servlets including servlet
programming model, design patterns for e-commerce using servlets and a
comprehensive discussion of WebSphere Application Server security.

The book is divided into five parts.

In the first part we discuss IBM’s commitment to the Linux operating system
and provide installation procedures for the different applications.

In the second part we discuss Web programming models, and include an
overview of Java servlets, the advantages of servlets, and servlet
programming.

Part 3 discusses WebSphere Application Server security, Enterprise Java
Beans (EJB) and Extended Markup Language (XML). Also, part 3 discusses
design patterns for e-commerce using servlets.

Part 4 discusses how to access 2- and 3-tier databases using DB2 Universal
Database.

Part 5 contains three samples that will help to test your access to DB2. Part 5
also includes an appendix on how to install IBM HTTP Server with SSL.
© Copyright IBM Corp. 1999 ix

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Jakob Carstensen is an Advisory Specialist for Netfinity Servers at the
International Technical Support Organization, Raleigh Center. He manages
residencies and produces redbooks. His most recent publication was
Implementing Oracle Parallel Server on Netfinity Servers. Before joining the
ITSO, he worked in Denmark both for the IBM PC Institute teaching
TechConnect and Service Training courses and for IBM PSS performing
level-2 support of Netfinity products. He has a Bachelor of Electronic
Engineering degree and has worked for IBM for the past nine years.

Herman Chen is an IT Specialist for the IBM Global e-business solutions and
a SUN-certified Java programmer from Endicott, New York. He has worked as
an application developer on numerous e-business projects. During his recent
project, he worked on a team that delivered a Web-enabled solution,
e-business Accelerator, for small and medium businesses. His interests are in
designing and developing applications to enhance business processes. He
has a Bachelor’s degree in Computer Science and a Master’s degree in
Business Administration from the State University of New York. He has
worked for IBM for the past four years.

Doug Marker is Director of Research and Development at Internet Age Pty
Ltd., Sydney Australia. He has over 32 years of experience in Computing. His
areas of expertise include designing and building e-commerce systems plus
technologies including UNIX/Linux, RDBMS, OOT (Java and Smalltalk). He
has written and presented extensively on e-commerce and emerging Internet
technologies.

Dan Cornell is a Vice President of Rare Medium, Inc., an Internet solutions
firm helping clients develop e-commerce Internet strategies, improve
business processes, develop marketing communications, branding strategies,
and interactive content using Internet-based technologies and solutions. He
directs technical production efforts in the San Antonio office, specializing in
server-side Java Web application development. Previously, Dan was Vice
President of Engineering for Atension, Inc. where he led their technical
development team and architected Atension's internal engineering practices.
Prior to his work with Atension, Dan developed simulation applications for the
Air Force with Southwest Research Institute. He has a Bachelor of Science
degree in Computer Science, and has published several papers on topics
ranging from data security to high-end graphical simulations.
x Linux for WebSphere and DB2 Servers

Paul Zikopoulos is a senior member of IBM’s DB2 Universal Database
Development team located in Toronto, Canada. As a team member for the
past five years, he has written over 25 books on DB2 and its family of
products. A certified DB2 Advanced Technical Expert and certified Database
Administrator, he is a key player in the development of DB2 and its
documentation.

Thanks to the following people from the ITSO Center in Raleigh for their
invaluable contributions to this project:

Marco Pistoia
Barry Nusbaum
David Watts
Linda Robinson
Tate Renner
Shawn Walsh
Gail Christensen
Margaret Ticknor
Mike Haley

Thanks to the following IBM employees:

Peyen Fong, Marketing Manager, Linux Software
Jonathan Prial, Director, Integrated Solutions and Linux Marketing
Julie Briddon, Marketing Communications
Susan Williams, DB2 Platform Development
Brian Brandt, DB2 Install Development
Felix Lee, DB2 Install Development
Pamela Burnside, DB2 Install Development Manager
Scott Baily, Toronto Information Development
Doug Foulds, Information Development
Blair Adamache, DB2 Development
Brian Brandt, DB2 Development
Arnold Goldberg, WebSphere Development
Scott Sams, WebSphere Development

Thanks to the following people from Atension, Inc.:

Michael Brinkman
Daniel Glover
Adam Houghton

Thanks also to Mark Olberg from Caldera Systems.
xi

Comments welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO redbook evaluation” on page 291
to the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com
xii Linux for WebSphere and DB2 Servers

Part 1. Introduction

This part introduces the Linux operating system and IBM’s commitment to
migrate software products to run on this new and exciting platform.
© Copyright IBM Corp. 1999 1

2 Linux for WebSphere and DB2 Servers

Chapter 1. The Linux operating system

Linux is a freely distributed, modifiable operating system (OS) that runs on
most of the popular microprocessors on the market today, including Intel
80x86 and IBM PowerPC. Linux is free because it is licensed under the
General Public License (GPL) which is a contract agreement allowing end
users to freely use the software under certain restrictions. These restrictions
prevent unscrupulous companies from stealing open source code into their
own propriety software and call it their own code. For more details on GPL
see http://www.fsf.org.

"Free speech, not free beer" - Richard Stallman
The Linux kernel, the underlying program interfacing and running the
computer hardware, was created by Linus Torvalds in 1991. He first wrote the
kernel on the Intel 80386 microprocessor and distributed the code worldwide.
He invited programmers from around the world to improve the code.
Whenever new code is written, Torvalds and other programmers closely
involved with the kernel decide whether to incorporate the new changes into
the operating system.

Many programs incorporated into the operating system were already freely
distributed on the Internet. The majority of these programs are the efforts of
Richard Stallman, the well-known advocate of free software and the creator of
GPL - a license model adopted by Linux. The purpose of GPL as created by
Richard Stallman is to ensure free software stay open sourced and allow new
programs to retain under one ownership, the public. Hence, "free speech, not
free beer".

1.1 Commercializing Linux

Under GPL, Linux evolves rapidly as enthusiastic programmers from around
the world contribute source code to be incorporated into the official release
version controlled by Linus Torvald, Alan Cox, and other programmers
intimate with the development of the Linux kernel.

According to International Data Corp, Linux grabbed a 17.2 percent share of
server operating units shipped in 1998 - a startling 212.5 percent growth rate
from 1997. The support announced by IBM, followed by other companies
such as HP, Compaq and Dell, along with a growing number of Linux
distributors such as Caldera, Red Hat, SuSE, and TurboLinux, helped bring
Linux into the mainstream.
The Linux operating system 3

According to a Gartner Group/Datapro 1998 survey, customer satisfaction (in
terms of interoperability, cost of ownership, ease of management, and
performance) with the Linux operating system running at business sites was
rated significantly higher than the Solaris, HP-UX, NetWare, Windows NT,
and other UNIX platforms.

1.2 Best things on the Internet are free?

While most product quality and improvements are driven by economic factors
such as price, competition, and more competition, open software such as
Linux and the Internet seem to be the exceptions and instead are driven by
free and open standards.

The majority of Internet Web sites today are powered by a free Web server
software called Apache. According to an ongoing NetCraft study, more than
half of Web servers run Apache, which runs on all major platforms, and the
number keeps growing (see Figure 1). Major Internet companies such as
Yahoo, HotWired, Internet Movie Database and Microsoft Network (MSN)
deploy Apache for its stability, scalability and performance. In addition,
according to SiteMetrics Corp., 35 percent of 53,265 U.S. companies with
revenue over $10,000,000 use Apache, including the number 1 and 5
most-popular Web sites, Yahoo and Geocities respectively, which have over
100,000,000 hits per day each.

Figure 1. Apache has a large growing base; even more use Apache derivatives, such as IBM HTTP Server

0

1000000

2000000

Aug 1996 1997 1998

Apache

Microsoft

Netscape
NCSA

Other
4 Linux for WebSphere and DB2 Servers

1.3 Linux performance, stability, and security

Linux is a UNIX-like operating system. It offers stability and performance, and
is a secure system. There is general consensus that Linux is one of the most
secure operating systems in the market because of its "virus-proof" design.
Linux is a UNIX clone that offers a multiuser environment. This environment
prevents an individual user from running a virus-prone program such as a
Trojan Horse program and infecting the entire system. In other words, a
multiuser environment offers multiple levels of security protection.

A general misconception about the lack of security in open source software is
that open source code invites crackers to penetrate the system more easily
than closed proprietary code. Nothing can be further from the truth.

Commercial vendors prefer to sow fear, uncertainty, and doubt among its end
users. They mislead end users to believe proprietary software is more secure
because crackers will not know how to work around their software. But
crackers, by definition, seek ways to circumvent loopholes and they
constantly do so with or without you and the commercial vendors knowing.
Security holes thrive only when they are hidden.

Open source software promotes security by allowing everyone to review the
source code where potential security holes may exist. Because the code is
open to everyone, security holes do not remain hidden for long. When a hole
is exposed, a fix is available sooner than most commercial software fixes.

Open source also promotes security by giving system administrators the
knowledge to take accountability for their own systems. Administrators need
to be accountable for their systems because security is an on-going concern,
not accomplished by simply applying service packs. Administrators can
analyze their system’s security strengths and weaknesses by gaining more
insights into the source code the system runs. The system is only as secure
as the weakest link of a chain.

1.4 Ease of use

Linux has accelerated its development efforts in desktop GUI with the release
of two major desktop environments: GNU Network Object Model Environment
(GNOME) and K Desktop Environment (KDE). These desktop environments
offer flexible ways end users can customize their desktop look and feel.

For instance, KDE setup wizard (see Figure 2) allows you to select any one of
the four themes: MacOS, KDE Default, Windows, BeOS.
The Linux operating system 5

Figure 2. KDE setup wizard offers four themes for users to choose the look and feel they like

Setup Wizard in Figure 2 is shown in the Windows theme, which provides
the familiar look and feel of the Windows desktop.

In Figure 3, the MacOS theme lets a Linux user enjoy the popular look and
feel of the Macintosh desktop.

Note
6 Linux for WebSphere and DB2 Servers

Figure 3. The MacOS theme offers the popular Macintosh desktop environment

1.4.1 Summary
Linux is an alternative OS for deploying corporate computers, both as a
desktop and as a server.

The Linux community, people who develop and support Linux, has given the
computing industry a viable choice in operating systems. It does not have to
be an all-or-nothing proposition replacing your existing computing
environment. Most enterprises already have a heterogeneous environment
that Linux can play in.

More information can be found online at the following Web sites:
• IBM’s introduction to Linux:

http://learn.ibm.be/linux/

• The Cathedral and the Bazaar:
The Linux operating system 7

http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar.h
tml

• General Public License:

http://www.gnu.org/copyleft/gpl.html

• The oldest Linux resource on the Net:

http://www.metalab.unc.edu/Linux/

• Computer Emergency Response Team, a central location for the latest
security news and patches:

http://www.cert.org

• A complete list of hardware ports:

http://www.ctv.es/USERS/xose/linux/linux_ports.html

• NetCraft Survey of Apache Web Server Market Share:

http://www.netcraft.com/survey

• SiteMetrics Corporation Survey of Internet Servers:

http://www.sitemetrics.com/serversurvey/index.htm

• Survey: Linux Is No Fad:

http://www.zdnet.com/sr/stories/news/0,4538,2309670,00.html
8 Linux for WebSphere and DB2 Servers

Chapter 2. IBM’s commitment to Linux

IBM is fully committed to an open platform environment for running
e-business applications in the most flexible ways. With the increased demand
from IBM customers and business partners, IBM is offering full hardware and
software support to the Linux operating system.

IBM is committed to supporting its customers’ choice of platform and
operating systems - a commitment IBM extends to the support of Linux, the
open-source operating system.

To meet increased demand for this dynamic operating system, IBM is
providing the most comprehensive hardware, software and support solutions
based on products from its Personal Systems Group, Software Group, IBM
Server Group, IBM Global Services and education services.

As part of IBM’s continuing commitment to support the operating system of its
customers’ choice, IBM has teamed with leading commercial Linux
distributors Caldera Systems, Red Hat, SuSE, and TurboLinux to port, test
and certify the performance of IBM offerings running on various Linux
distributions, enabling you to exploit the full potential of Linux.

IBM’s support of Linux is a natural extension of the IBM Software Group
cross-platform strategy of supporting customers’ heterogeneous
environments and supporting open standards. Look for key software
applications, including DB2 Universal Database, WebSphere, Lotus Domino,
MQSeries, Host On-Demand and Advanced File System, to integrate with
your existing systems, enabling you to build, deploy and manage e-business
Linux-based applications more rapidly and cost-effectively.

IBM Netfinity servers are earning a reputation as a reliable platform for Linux
implementation, offering stability, performance, proven reliability, and low cost
for total solutions. With support available worldwide, the combination of
Netfinity servers and Linux applications offers you affordable,
enterprise-class systems, backed by IBM's extensive experience, skills and
resources to address your technical needs.

Please see http://www.ibm.com/linux/ for further details.
IBM’s commitment to Linux 9

10 Linux for WebSphere and DB2 Servers

Chapter 3. The IBM Application Framework for e-business

The IBM Application Framework for e-business uses open standards
technology in the industry to support an open platform environment. This
environment adopts the Java programming language to provide a
write-once-and-run-anywhere methodology where developers can build on a
new or existing computing framework.

3.1 e-business: merging the Internet and IBM technology

The IBM Application Framework for e-business is an information technology
architecture defining a Web-centric software development platform based on
Internet-standard technology. This open platform enables Web developers
and system integrators to build new Internet solutions and to integrate
multiplatform, multivendor systems. See Figure 4.

Figure 4. The IBM Application Framework for e-business provides an open platform for
developers

Internet technology is the focal part of the IBM Application Framework for
e-business. The information superhighway created a virtual world where
everyone can connect from anywhere, at anytime, with any device. This
became a reality when the computing industry adopted Internet-standard
technology such as HTML, XML, and Java. The open standards Internet
technology used by the Application Framework enables IT professionals to
build innovative Web solutions independent of specific vendor hardware and
software.

Development
Tools and

Components

Application Servers
and Integration

Software

Secure Network
and Management

Software

NT OS/2 AIX HP-UX Solaris OS/400 OS/390LinuxNetWare
The IBM Application Framework for e-business 11

Web solutions reinforce the implementation of a network computing model
where application users can run any hardware device to access dispersed
information on the Web. These devices are called thin clients, which means
they are mainly used for presenting information and have little or no
application logic that processes the information. The processing of business
application logic is run on the server machine connected to the thin client.
This model provides universal access for the thin clients using various
devices such as a Web browser, desktop computer, PDA, set-top box, mobile
phone, information appliance, and other devices. See Figure 5.

Figure 5. The Internet using open standards technology makes universal access a reality

3.2 Foundations of the IBM Application Framework for e-business

The Application Framework is built from modular layers of general services
and tasks. These service layers span horizontally across your entire network,
working in unity to provide an environment of high availability and scalability
as shown in Figure 6:

Any User
Any Client

Any Data
Any Server

NCF Network Infrastructure

Network Services

Security and Directory

Mobile Enablement

Client Enablement

Host Integration

Universal Access
12 Linux for WebSphere and DB2 Servers

Figure 6. The open and modular architecture design of the IBM Application Framework for e-business provides a
complete end-to-end open platform to develop e-business solutions

The building blocks of this illustration are two components that glue the
Application Framework’s software services and hardware infrastructure
seamlessly. They are the Java programming language and the software
connector components.

3.3 Java everywhere

Java was created by an IBM partner, Sun Microsystems Inc, as the unifying
programming language for a platform-independent computing environment. It

Application Server
Software

Application
Integration

Systems Management

Network Infrastructure

Web Application Programming
Environment

e-business Application Services

Thin Clients

Web Application
Servers

Content

Tools

Java

External Services
The IBM Application Framework for e-business 13

is a fast and powerful object-oriented approach to run software on different
computing platforms or networks.

3.4 Connectors are bridges between networks

Connectors link existing heterogeneous computers to communicate with each
other. They are software written using industry open standards such as
TCP/IP and IIOP protocols. One type of connector service is a gateway
software that links an application Web server to a client computer
communicating using HTTP protocol. An application server needs to be
flexible; the IBM Application Framework provides a complete set of services
to help businesses collaborate effectively, maintain and access information
efficiently, and conduct transactions reliably in both intranet and extranet
environments.

Connectors are Java libraries and supporting tools that support access from
the Framework's programming environment to various external data and
application servers. They shield the programmer from the usually proprietary
network protocols needed to access these servers. IBM provides a
comprehensive set of e-business connectors to a wide range of existing
application and data servers, including CICS, Encina, IMS, Domino, MQ, DB2
and other relational databases. Connectors also links different computer
networks, allowing them to interoperate on a common level. See Figure 7.
14 Linux for WebSphere and DB2 Servers

Figure 7. Java and connectors make a hetergeneous computing environment work seamlessly

3.4.1 Some key reasons for using connectors
Here is a list of key reasons for using connectors:

1. Software linking existing information systems to the Web

2. Helps leverage proven customer applications

• Minimal change to back-end applications
• Quicker time to market
• Portability across multiple systems and servers

3. Leverages existing enterprise investments

4. Powerful Web integration for:

• IBM and Lotus e-business application servers
• Major application subsystems

Thin Clients

Web Application
Servers

External Services

Connectors

Enterprise
JavaBeansContent

Write Once, Run Anywhere
The IBM Application Framework for e-business 15

5. Gateways for Go and others:

• Net.Data (links relational databases using JDBC, SQL, ODBC)
• CICS Internet Gateway (transaction-based servers and applications)
• MQSeries Internet Gateway (guaranteed message delivery)
• DCE Encina Lightweight Gateway (transaction-based DCE/Encina)
• IMS Connectors (IMS systems, applications, hierarchical databases)
• Host On-Demand (emulation access Java applet, 3270, 5250, VTxxx)

6. Gateways for Domino - the Domino.Connect family

• NotesPump (relational databases)
• MQSeries Enterprise Integrator
• LSXs (MQSeries, SAP R/3, Baan, etc.)

3.5 Service modules in the Application Framework for e-business

The Framework consists of six independent service modules for building an
e-business:

• e-business application services
• Web application programming environment
• Application server software
• Application integration
• Network infrastructure
• Systems management

These services support the deployment of business applications across
intranets, extranets, and the Internet. They lay out a complete groundwork for
which a solution provider creates e-business applications using secure, open,
reusable Internet technology. A system integrator can add application server
software, application integration, network infrastructure and system
management services for various platforms including AIX/UX, Linux, SunOS,
Windows NT to an existing computing environment. A Web developer can
implement an e-commerce solution using the Framework’s e-business
application services and Web application programming environment. See
Figure 8.
16 Linux for WebSphere and DB2 Servers

Figure 8. A complete set of services defines the e-business Web application server architecture

3.5.1 The e-business application services
These are Web applications built for any industry solutions. They generally
contain high-level application logics and Graphics User Interface (GUI)
presentations. Web-enabled payment, catalog, and order management
services of an e-commerce site contain both the business application logic
and the GUI presentation of the Web site design.

3.5.2 The Web application programming model using IBM software
The IBM WebSphere Application Server, which runs on an HTTP Web server
such as IBM HTTP Server, is the central point for integration in the Web
application programming environment. It is the first entry point to server
functionality supporting HTTP requests from Web clients. It supports the
mechanism for locating and invoking business logic by implementing servlets
on the server, and it acts as connector gateways that link the Web to existing
enterprise applications, data, and systems. It coordinates, collects, and
assembles static and dynamic contents. These contents are provided by the
Web application programming environment either through IBM software
development products or any third-party development tools that comply with
industry programming standards. For a complete list of IBM software products
visit http://www.software.ibm.com.

Application Server
Software

Application
Integration

Systems Management

Network Infrastructure

Web Application Programming
Environment

e-business Application Services

Dev
Tools
The IBM Application Framework for e-business 17

These programming standards include HTML, XML, Java, and JavaBeans, for
example Enterprise JavaBeans (EJB).

Enterprise JavaBeans provides dynamic binding of an application’s business
logic to the back-end data storage, such as DB2, and transaction service,
such as CICS, Web clients, existing data and applications, the network
infrastructure, and the server platform.

3.5.3 Summary
The IBM Application Framework for e-business allows developers to employ
open standard technology contributed by different vendors to ensure the
developers and IT solution providers that their solution will be easy to migrate
and they will have independence from a single vendor, the freedom to
choose, the flexibility to modify, etc. It also defines or demonstrates the
communication gaps between different hardware and software systems. It
also predicts or introduces the future of the network computing world in which
IT changes are occurring today and tomorrow. The mobile, wireless, thin
client computing model and the server-centric computing model are
emphasized by the explosion of the Internet and the emergence of
e-commerce applications.

Benefits of adopting the Application Framework include:

• Write once, run anywhere
• Lower development expense
• Quicker time to market
• Higher quality business applications

It incorporates an application model that dynamically adapts the application's
business logic to a variety of clients, platforms, data storage, and transaction
implementations. It provides a network infrastructure that enables the
deployment of consistent, coherent, and scalable solutions -
standards-based, scalable, server-centric technology to leverage an existing
system.

The IBM Application Framework architecture helps you to become an
e-business.
18 Linux for WebSphere and DB2 Servers

Chapter 4. WebSphere, VisualAge for Java and DB2

This section describes how to use IBM WebSphere, VisualAge for Java and
DB2 in the IBM Application Framework for e-business. See Figure 9:

Figure 9. Web programming development using WebSphere, DB2, and VisualAge for Java

4.1 Foundation of the IBM Application Framework for e-business

The IBM Application Framework has a unifying programming model using the
Java programming language. Java is an object-oriented programming
language for building a Web-based application that can be written once and
run on any operating system platform. In many cases, the Java program can
be executed on another platform without recompiling. All IBM products in this
Framework use the Java programming language to deliver complete
server-side Web applications. In addition to WebSphere, VisualAge, and

VisualAge for
Java

DB2

WebSphere

Search Engine Staging
Server

Netscape, IE

Linux
WebSphere, VisualAge for Java and DB2 19

DB2, IBM San Francisco and Lotus e-Suite facilitate the development of
client-side Web applications.

4.2 VisualAge for Java

VisualAge for Java is an award-winning Java application development
environment for building Java applications, applets, servlets, and JavaBean
components. It offers exceptional developer productivity, ease-of-use and
powerful features such as a built-in high-performance compiler, connections
to more enterprise systems, and team programming support. Please see a
detailed product description on the IBM Web site,
http://www.software.ibm.com.

4.2.1 Methods of delivery
The IBM Application Framework for e-business contains all the necessary
methods that form the Web application programming environment for writing
server-side Web application. Using VisualAge for Java Integrated
Development Environment (IDE) provides an easy approach to develop these
methods. These methods use open standard technology including:

• Servlet for processing business logic on the Web application server.

• JavaServer Pages for separating application development from Web
graphical design work.

• A flexible application development environment for adopting pluggable,
reusable components such as applets and JavaBeans or selecting a
third-party development tool.

• Connectors for bridging the applications with applications that access
existing or external systems and with those applications that access data
storage.

• Required Web network infrastructure and system management.

Together, these elements provide a secure and complete platform to deploy
new application or to extend an existing application to the Web.

In Figure 10 on page 21, there are two interrelating models: client and Web
application server models.
20 Linux for WebSphere and DB2 Servers

Figure 10. Web application topology consists of client and server models

The client model consists of GUI presentation modules allowing developers to
define/refine presentation data created/processed by the Web server model.
The Web application server model consists of server services that deliver
data to the client side. These services are: Java services, database services,
collaboration services, and application integration services. With VisualAge
for Java, the developers can easily create the modules of the client model.
These modules are typically applets, JavaBeans. In the enterprise edition,
VisualAge for Java provides Enterprise JavaBean support for accessing data
storage such as DB2.

With WebSphere, the developers can create server-side services using
Servlets, Java Server Pages (JSPs), Enterprise JavaBeans (EJBs), and
Extensible Markup Language (XML) technologies.

4.3 IBM WebSphere Application Server

IBM WebSphere Application Server is a Java-based Web application
deployment environment for server-side applications and JavaBeans. It helps
customers deploy and manage Web-based applications ranging from simple
Web sites to powerful e-business solutions. The WebSphere Application
Server helps solve real e-business problems by offering a portable
Java-based execution and management environment for server-side critical
business logic while enabling powerful Web transactions. The WebSphere
Application Server components cane be part of a multitiered architecture or
network topology with the WebSphere Application Server and associated

Clients

Clients Firewall

Web Application
Servers

Infrastructure
Services

External Services
WebSphere, VisualAge for Java and DB2 21

Web servers residing within the logical middle-tier along with a collection of
middleware components and services. Please see a detailed product
description at the IBM Web site: http://www.software.ibm.com.

Enterprise JavaBeans components provides dynamic binding of new
business logic to the underlying DB2 data storage, as well as to clients,
existing data and applications, the network infrastructure, and the server
platform.

4.4 DB2 Universal Database- the foundation for e-business

DB2 Universal Database V6.1 is the industry's first multimedia, Web-ready
relational database management system, strong enough to meet the
demands of large corporations and flexible enough to serve medium-sized
and small businesses. Please see a detailed product description at the IBM
Web site: http://www.software.ibm.com.
22 Linux for WebSphere and DB2 Servers

Chapter 5. Hardware and software setup

This chapter explains the steps to install IBM’s IBM HTTP Server, Apache,
WebSphere Application Server, DB2 and VisualAge for Linux on various
Linux distributions. Because each of these Linux distributions comes at
different code levels, and with quite different levels of products and product
mixes, success with one Linux install does not guarantee similar success with
another Linux.

The suite of software installed during this project included the following:

• Red Hat 6.0, Caldera OpenLinux 2.2 + OpenLinux 2.3 beta, TurboLinux
3.6

• Apache 1.3.6 and the IBM HTTP Server (Apache 1.3.6 based)

• Java JDK (both IBM jdk116 and Blackdown jdk117_v3)

• IBM WebSphere Application Server 2.0.3

• IBM DB2 Universal Database 6.1

• VisualAge for Java for Linux Version 3.0 - Technical Evaluation
© Copyright IBM Corp. 1999 23

A list of useful Linux and product Web sites:

Linux: www.linux.org

Linux how-to’s: www.linux.org/help/howto.html

Red Hat: www.redhat.com

Caldera: www.caldera.com

TurboLinux: www.turbolinux.com

SuSE Linux: www.suse.com

IBM WebSphere: www.software.ibm.com/webservers/

IBM DB2: www.software.ibm.com/data/db2/linux/

IBM VA for Java: www.software.ibm.com/ad/vajava/

IBM Alphaworks: www.alphaworks.ibm.com

During this project we made use of the following news sites. They are publicly
accessible on the IBM news server at news.software.ibm.com

• ibm.software.websphere.application-server

• ibm.software.db2.udb.linux

5.1 Initial setup guidelines

At the time of this project, some of the products were still available only in
beta code. While each product ran as expected, we did experience install
anomalies. While these will be resolved in future releases, we have
mentioned them here.

Each Linux distribution is different. A procedure that works with one may
well not work with another. Read distribution-related comments carefully.

Note

The steps provided below are a quick guide to the sections that follow. We
advise you not to start your install until you have read through this chapter.
Each of the following steps is explained in more detail in this chapter.

Note
24 Linux for WebSphere and DB2 Servers

5.1.1 Recommended install sequence checklist
1. Prepare your hardware - ensure the minimum configurations are available.

2. Install your chosen Linux distribution. Add your name as a normal user.

3. Familiarize yourself with the preferred X-Window environment (KDE or
GNOME).

4. To install Java, WebSphere, or DB2, you need to log in as the root user.

5. Caldera: Remove the old Java versions (kaffe and jdk rpms).

6. Caldera: Remove Apache 1.3.4 and install IBM HTTP Server 1.3.6.

7. Install Java (we used both IBM jdk116 and Blackdown jdk117_v3).

8. Install WebSphere 2.0.3 using an X-Terminal and the rpm -i command.

9. Restart your computer. The Apache HTTPD daemon should start
normally.

10.Use Netscape to test Apache and WebSphere.

11.Use Netscape to test WebSphere admin http://yourhost:9527.

12.Install DB2 from a Linux login console (rather than an X-Window).

13.Log in to DB2 (db2inst1) and run db2start and db2jstrt 8083 commands.

14.In DB2, add Java environment variables for jdk117_v3 into db2profile
script.

15.Log in to DB2 from an X-Term and run the command ’db2cc 8083’.

16.To allow Apache / WebSphere to see DB2, patch the startup script.

17.Log in as yourself and Install VisualAge for Java in your home directory.

18.From your X-Window run VisualAge for Java per the install notes.

19.Run the sample programs provided in this book.

5.2 Hardware setup

In this project we used four IBM Netfinity 3000 computers as workstations
and one IBM Netfinity 5000 as a LAN server running a shared DB2. We
installed the full suite of software on each machine. Later we varied the
configurations by moving functions between machines (See Figure 11 on
page 27).
Hardware and software setup 25

5.2.1 Netfinity 3000
Model: 8476-21U

Processor: Pentium II 400/100 Mhz

Memory: 128 MB

SCSI: Adaptec AHA 7895 dual channel ultra wide

Disk: 4 GB

Video Adapter: Matrox AGP G200 with 8 MB RAM

Network: Intel EtherExpress PRO100 on planar

5.2.2 Netfinity 5000
Model: 8659-2SY

Processor: Pentium II 400/100 Mhz

Memory: 128 MB

SCSI: Adaptec AHA 7895 dual channel ultra wide

Disk: 4 GB

Video Adapter: Matrox AGP G200 with 8 MB RAM. We also used:

Video Adapter: S3 Virge with 4 MB RAM

Network: AMD Am79C972 on planar

The actual minimum disk space needed for installing a full configuration of the
software was approximately 2.6 GB. The minimum processor speed we
recommend is a Pentium II 200 Mhz. The minimum monitor screen we
recommend is a 17inch monitor with a video adapter that can support 16-bit
color at 1024 x 768 pixels. The minimum LAN speed: 10 Mbps.

At times we experienced some challenges with the different Linux
distributions and the video adapters. We often had to do a custom install and
experiment.

5.3 Lab LAN setups

Figure 11 and Figure 12 on page 27 show the LAN setup in the ITSO lab.
26 Linux for WebSphere and DB2 Servers

Figure 11. Initial LAN setup in lab

Figure 12. Later lab LAN setup

Red Hat 6.0
Workstation

Red Hat 6.0
Workstation

Red Hat 6.0
DB2 Server

Caldera OL 2.2
Workstation

Turbo Linux 3.6
Workstation

Ethernet LAN

Netfinity 3000

Netfinity 3000

Netfinity 3000

Netfinity 3000

Netfinity 5000

Red Hat 6.0,
IBM HTTP Server,
Apache,
Java,
WebSphere,
DB2,
VisualAge for Java.

Caldera OL 2.2,
IBM HTTP Server,
Apache,
Java,
WebSphere,
DB2,
VisualAge for Java.

RedHat 6.0,
Java,
DB2.

Lab initial LAN layout and
software configurations

Turbo Linux 3.6,
Apache,
Java,
WebSphere,
DB2,
VisualAge for Java.

Red Hat with
DB2 as Server

Red Hat with
JAVA, VA4J

Caldera with
JAVA, VA4J,
IBMHTTP
Server

Turbo Linux
JAVA, VA4J

RedHat with
JAVA, Apache,
& WebSphere
Hardware and software setup 27

5.4 Linux - installation and configuration

The following sections cover the basic steps needed to install Linux from:

1. Red Hat Linux 6.0

2. Caldera Open Linux 2.2, Open Linux 2.3 (Beta)

3. Turbo Linux 3.6

(SuSE Linux 6.2 was not available at the time of this project.)

5.4.1 Installing Linux
The first task is to partition your computer’s disk. Some Linux systems will do
this for you while others require you to allocate file systems during the install.

Configuring a Linux disk has to do with the number of disks installed, your
prior experience, individual preference, and the available install options. You
should refer to your Linux install book for its advice and comments. You can
also try the disk partitioning we used in the labs. See Table 1.

Red Hat. You will be required to partition the disk as part of the Red Hat
install. You will be asked which partitioning tool you want to use (Fdisk or
DiskDruid). We recommend DiskDruid, which is easy to learn and very
forgiving.

Caldera. Offers to format the entire disk for you but will also allow you to
choose your own settings. If you let Caldera auto-allocate the partitions, it will
only allocate three partitions: swap, home (/home), and root (/).

Turbo Linux. As with Red Hat, you will be required to partition the disk. The
tools supplied with TurboLinux are not quite as user friendly as Red Hat’s
DiskDruid, nor as forgiving of mistakes. An error in TurboLinux can mean
having to start an install all over again from the beginning. Be careful.

Table 1. Linux partition sizes used in the lab on a 4 GB hard disk

Name Mount Point Size in MB Type Comment

home /home 1600 Linux User’s home directories

root / 2000 Linux Linux directories and products

swap 128 swap Must be as big as installed RAM

var /var 250 Linux Logging area
28 Linux for WebSphere and DB2 Servers

Originally we allocated /, /usr, /usr/doc, /tmp, /var, and /home but because of
the way many products install, we ended up only using these partitions.

This layout is a good starting point even if you later choose to split the disk
into more partitions. An advantage in keeping root (/) as a separate filesystem
is to prevent the other subdirectories for users (/home), logging (/var) and
temporary data (/tmp) from filling up the root filesystem or accidentally
corrupting root files and locking up or damaging Linux.

Be aware that if you do a lot of work logged in as the user root (also called
superuser) and this activity is performed while logged in via the X-Window
system, there is an added risk of filling up the Linux root filesystem without
realizing you have done so. The root user’s home directory is /root, which sits
in the / filesystem and not the /home filesystem where users normally go. The
GNOME GUI warns you of the danger of logging into X as root.

If you have two disks you could place either / or /home or /usr on disk 2.

5.4.2 Graphics adapter setup
All Linux systems will try to configure your graphics adapter so they can
automatically start the X-Window software on bootup. In the past Linux would
boot up to a text console window and you had to manually start the X-Window
system. The Linux products we installed all give you the option of having
X-Window as the default post-boot login window. While in X-Window you can
switch to any of the six or more virtual text consoles by using the Ctrl+Alt+F1
(F1 to F6) keys. On Caldera you can also access additional virtual consoles
by pressing F8 to F12. These virtual consoles are used to log startup
messages. These can prove helpful if you are having any kind of problems
with software not starting properly. For example, pressing Ctrl+Alt+F12
brought us to a screen with an error message advising us that WebSphere
was incompatible with Apache 1.3.4. during our Caldera WebSphere install.

In most cases you should be able to get your graphics adapter working okay.
As a rule of thumb, on Linux, X-Windows works best at 1024 x 768 or better
resolution. A resolution of 800 x 600 is workable, but you may find some
windows go off the screen. At 640 x 480, X-Windows is close to useless.

A good brand of adapter with as little as 2 MB RAM can be used to support
Linux X-Windows but the best results are obtained with 4MB or more of video
RAM. Your card should offer 1024 x 768 or better resolution with 16-bit color.
If you are forced to run the card as low as 256 colors, you may lose a lot of
impact.
Hardware and software setup 29

5.5 Product installation preparation

Follow these instructions before installation:

5.6 Java - Installation and configuration

During this project the Java versions that were current for Linux included
jdk116 from IBM (http://www.ibm.com/alphaworks) and jdk117_v3 from
Blackdown (http://www.blackdown.org/). We installed both IBM’s jdk116 and

As a side project, this team also installed Red Hat 6.0 and the products on
an IBM ThinkPad 760 that had 2.8GB disk and 96Mb RAM and the panel
display set to 1024 x 768. The software ran well on this notebook. We also
did a dual Windows/Linux install on an IBM Thinkpad 600 Notebook with
6.4 GB and only a 1024 x 768 panel display. This ran very well.

You can expect some challenges with setting up and running a PCMCIA
network card but we succeeded on both machines. Essential reading is at
http://hyper.stanford.edu/~dhinds/pcmcia/ftp/doc/PCMCIA-HOWTO.html That
document explains how to set up the following two files that are crucial for
PCMCIA to work: /etc/pcmcia/network.opts and /etc/sysconfig/pcmcia.

Notebook Install

Before you can install Java or Apache or IBM’s HTTP Server you must
remove the preinstalled Java and Apache products that are at the wrong
level to work with WebSphere. Remove them in this sequence:

• rpm -e apache

• rpm -e apache-docs

• rpm -e kaffe

• rpm -e jdk-shared (may only be in Caldera 2.3)

• rpm -e jdk-static

• rpm -e jdk

• rm -rf /etc/httpd (removes any residual configuration files)

Caldera 2.2 and 2.3 only
30 Linux for WebSphere and DB2 Servers

Blackdown jdk117_v3 (plus the jdk117_v3 native threads pack). In time these
versions will change. jdk116 (with native threads) is required for WebSphere.

To install IBM’s jdk116 (which comes as part of WebSphere), wait until you
are ready to install WebSphere and follow the directions there (see 5.12,
“WebSphere Application Server - installation and configuration” on page 51).
Also, it is quite okay to set up more than one Java on your computer. We set
up both jdk116 and jdk117_v3 on every install. We did this because of
problems we experienced where WebSphere needed jdk116 and the DB2
Control Center needed jdk117.

Blackdown jdk117_v3 is in two files. These are jdk_1.1.7-v3-glibc-x86.tar plus
jdk_1.1.7-v3-glibc-x86-native_tar.gz (which is an add-on pack). The
Blackdown jdk archive files should be copied to directory /opt then un-zipped
and un-tarred extracting themselves into the directory (named jdk117_v3).

The following steps are the recommended way to install jdk117_v3 on your
computer. The installing directory /opt was chosen because that is where
WebSphere automatically installs jdk116. To be consistent we also placed
jdk117_v3 in the /opt directory.

5.6.1 Java install steps
1. Copy the two downloaded jdk117 archive files to /opt.

2. If either file has the .gz suffix, then unzip it with the gunzip command.

3. Next run tar -xvf against each file. This un-tars them into jdk117_v3.

4. Create a file in your home directory called java117 and add lines:

• export JAVA_HOME=/opt/jdk117_v3

• export PATH=$PATH:$JAVA_HOME/bin

• export THREADS_FLAG=green

5. Create a file in your home directory called java116 and add lines:

• export JAVA_HOME=/opt/ibm-jdk-l116

• export PATH=$PATH:$JAVA_HOME/bin

• export THREADS_FLAG=native

5.6.2 Java testing and setup
In your home directory run commands:

source java117
java -version
Hardware and software setup 31

The above source command takes the java117 you created and uses it to set
your working environment variables to the correct values needed for Java
117. To test that Java can be found and that it runs properly run the java

-version command. You can further check the settings of the environment
variables with the following set command:

set | more

You can switch between the different Java versions as needed, by just
running the source command against the particular Java you want to activate.
Again, we needed these two different Java versions in order to get all the
products to work correctly. This may be fixed by the time you read this book. If
so, you can just use the one recommended Java version.

We strongly recommend that you do not put your Java environment variables
in the system profile files (/etc/profile for Red Hat, TurboLinux and SuSE -
/etc/config.d/shells/profile for Caldera), as some of the Java environment
variables (such as THREADS_FLAG) can override the settings needed by
running programs such as DB2 and WebSphere, even though products such
as WebSphere also keep their own paths and settings in their own profile files
(see part of WebSphere’s bootstrap.properties file in Figure 24 on page 56).

5.7 Apache - installation and configuration

This is the easiest part of the setup for Red Hat and TurboLinux (and SuSE)
as these distributions come with Apache 1.3.6 already installed and running.

Caldera Apache Reinstall: You should have already deleted the Apache
1.3.4 version that is pre-installed with Caldera 2.2 and 2.3 beta (this was
covered in 5.5, “Product installation preparation” on page 30). Your first
decision at this point is to decide which replacement Apache to install: IBM
HTTP Server 1.3.6 or the standard Apache 1.3.6 distribution. If you choose
the standard Apache distribution, you may well have to install it as source and
compile it to get a proper working product. We have tested the IBM HTTP
Server and it installs easily and works well with WebSphere 2.0.3.

Apache and IBM HTTP Server: Because we had troubles trying to get some
standard Apache 1.3.6 setups working with WebSphere 2.0.3.,we removed
Apache 1.3.6 and installed IBM HTTP Server. Our most successful testing
was using IBM HTTP Server.
32 Linux for WebSphere and DB2 Servers

5.7.1 IBM HTTP Server install steps
1. If on Caldera 2.2 or 2.3, you need to download the prerequisite software

module called libstdc++-compat-2.8.0-1.i386.rpm. To do this, go to
ftp://ftp.calderasystems.com/pub/openlinux/2.3/contrib/RPMS/. The
module can be applied to both 2.2 and 2.3 versions of Caldera. If you have
the Caldera OpenLinux 2.3 install CD, you can obtain the module directly
from the CD in the col/contrib/RPMS directory. Note the DB2 install also
requires the libstdc++ module.

2. Next install the stdlibc++ and IBM HTTP Server modules using either the
visual install method or manually using the following X-term commands:

1. Create /home/ihs_install and put the IBM Server RPM in it.

2. rpm -i libstdc++-compat-2.8.0-1.i386.rpm (Caldera only)

3. rpm -i IBM_HTTP_Server-1.3.6-1.i386.rpm

Some Linux distributions allow clicking on an *.rpm module to install. If you
prefer the visual RPM install technique you can use it with safety on both
the stdlibc++ rpm module and then the IBM HTTP Server RPM module.
However, it is important to remember later when in the WebSphere install
chapter that WebSphere install may fail if using a visual installer, since
WebSphere may need to issue messages to you that visual installers miss.

Visual RPM installer
Hardware and software setup 33

Figure 13. Generic Apache Web page

5.7.2 Testing Apache
Apache: Figure 13 shows the Web page you should see if your Apache is
running normally (http://localhost/). Try this as soon as your Apache or IBM
HTTP Server install is complete and you have Apache up and running.

IBM HTTP Server: Figure 14 on page 35 shows the IBM HTTP Server Web
page working.

Remember that the only real difference between IBM HTTP Server 1.3.6 and
standard Apache 1.3.6 is that IBM has added a lot of ease-of-use features.
Also the IBM HTTP Server seems to integrate better with the WebSphere
Application Server.
34 Linux for WebSphere and DB2 Servers

Figure 14. IBM HTTP Server

5.7.3 Setting up IBM HTTP Server startup script
When standard Apache is installed it sets up a startup script called httpd in
/etc/rc.d/init.d and adds this script to various Linux runlevels. Usually you will
see httpd as a start in runlevels 3, 4 and 5 and as a stop in runlevel 2. The
runlevels represents different phases of a Linux bootup and run state. A
normal Linux after bootup goes to runlevel 5. As a further example, running
the halt command Invokes a runlevel of 0. See Figure 16 on page 38.
Hardware and software setup 35

The /etc/rc.d/init.d directory is where all runlevel scripts are placed and is
used to start Linux and Product services during bootup, as Linux goes
through its various startup runlevels. It is beyond the scope of this book to
explain how and why runlevels function the way they do, other than to say it
was derived from UNIX System V and is an integral part of Linux. So if you
want IBM HTTP Server to start automatically at boot time, then you will need
to copy the IBM HTTP Server startup script (apachectl) to /etc/rc.d/init.d and
go through the process of setting up the required runlevels following the
administration instructions for your Linux distribution and those below.

5.7.4 Getting IBM HTTP Server (apachectl) to start at boot time

5.7.4.1 Non-Caldera distributions
The following steps should work for all distributions except Caldera, which
unfortunately does not contain any visual runlevel editor.

1. Copy file /opt/IBMHTTPServer/bin/apachectl to /etc/rc.d/init.d

2. Invoke the runlevel editor for your Linux system. This can be achieved by
opening an Xterm and running either tksysv or ksysv if available.

3. Add the script apachectl to start in runlevels 2 3 and 4 using priority 85.

4. Add the script apachectl to stop in runlevel 2 using priority 15.

Test it by restarting your Linux and seeing that the httpd daemon starts.

5.7.4.2 Caldera (but works on all other) distributions
1. Copy file /opt/IBMHTTPServer/bin/apachectl to /etc/rc.d/init.d

2. Add the following links:

• ln -s /etc/rc.d/init.d/apachectl /etc/rc.d/rc0.d/K15apachectl

• ln -s /etc/rc.d/init.d/apachectl /etc/rc.d/rc1.d/K15apachectl

• ln -s /etc/rc.d/init.d/apachectl /etc/rc.d/rc2.d/K15apachectl

• ln -s /etc/rc.d/init.d/apachectl /etc/rc.d/rc3.d/S85apachectl

• ln -s /etc/rc.d/init.d/apachectl /etc/rc.d/rc4.d/S85apachectl

• ln -s /etc/rc.d/init.d/apachectl /etc/rc.d/rc5.d/S85apachectl

The above links create an entry for apachectl at every runlevel. At levels 0, 1
and 2, apachectl is (K)illed. The 15 sets the priority or sequence in which it is
killed. In runlevels 3, 4 and 5, apachectl is (s)tarted and given priority or
sequence 85, which ensures it starts after other more important tasks (such
as the network). Using 15 for kill and 85 for start are good choices, but other
numbers could have been chosen providing you know what you are doing.
36 Linux for WebSphere and DB2 Servers

Figure 15. Standard SysV runlevel editor tool from Red Hat 6.0

The details in Figure 16 on page 38 may not be easily readable, but the image
was included to show you another version of a typical runlevel editor. These
vary from one Linux distribution to another and from one X desktop to
another. The one that seems common to all Linux distributions is the one
shown in Figure 15. If you can locate that one on your Linux system, then use
it. A sure way to prove you have it is to invoke it in an Xterm window with
command tksysv. The tool shown in Figure 16 can be invoked with the Xterm
command ksysv. However, these applications are normally invoked from the
menu bar of your desktop environment, if you can manage to identify them.
This takes a lot of familiarity, and the actual menu to use varies from Linux
distribution to distribution and desktop to desktop. Running the Xterm
commands mentioned makes it much easier.
Hardware and software setup 37

Figure 16. Another SysV runlevel editor used to set runlevels for startup scripts and tasks

5.7.5 Detecting Apache problems
Apache and Red Hat: Any problems with Apache will show up during the
boot in that the HTTPD task will not start. It will sit at this process for several
minutes before giving up and carrying on with the bootup. Once up, any
attempt to access http:/localhost/ from an Internet browser will fail.

Apache and TurboLinux: Same as for Red Hat.

Apache and Caldera: If Apache fails it will not be obvious during bootup as it
is with Red Hat. The boot will seem normal but Apache will not be running
when you try to access http://localhost/. Check the Caldera bootup
messages by switching to virtual console F12 (Ctrl+Alt+F12). Also look at
virtual consoles. Because each Linux distribution (such as Red Hat, Caldera,
TurboLinux or SuSE) can and may put the Apache configuration files in
different places, it is important to refer to the documentation that came with
your particular Linux system or Apache product release.
38 Linux for WebSphere and DB2 Servers

5.8 Installing and configuring DB2 Universal Database

The following describes how to install DB2 Universal Database Version 6.1 on
a Linux-based workstation that is running one of the following distributions:

• Caldera OpenLinux Version 2.2 or Version 2.3

• Red Hat Version 5.2 or Version 6.0

• TurboLinux Version 3.6

• SuSE Version 6.1

The instructions in this section assume that you install and configure your
DB2 product using all the defaults provided by the DB2 Installer program. The
DB2 Installer program is a menu-based installation program that assists you
in accomplishing difficult installation and configuration tasks. The DB2
Installer program will automatically create an instance, create the
Administration Server, and configure them for communications, allowing you
to get DB2 up and running in very little time.

This also assumes that you have met all of the hardware and software
requirements outlined in 5.4, “Linux - installation and configuration” on page
28.

We recommend, for the purposes of this book, that you do not maintain
previous users or copies of DB2 on your workstation. If you need to remove
DB2, see 5.11, “Deinstalling DB2 Universal Database” on page 48. If you
maintain a user that is one of the default user accounts created by a default
DB2 installation, the DB2 Installer program may not be able to successfully
create the default instance or the Administration Server.

5.9 Before you begin

Before you can install DB2 on a Linux-based workstation, ensure that your
distribution of Linux meets the following requirements:

1. Linux kernel 2.0.35 or higher

2. RPM (Red Hat package manager)

3. pdksh package (public domain Korn shell)

4. glibc Version 2.0.7 or higher

5. libstdc++ Version 2.8.0
Hardware and software setup 39

Since the whole Linux phenomenon is relatively new and based on an open
and ever-improving code base (without a clear set of standards), each Linux
distribution differs from one vendor to another. Consequently, the distribution
you install may not be DB2-ready out of the box and may not come with some
of the packages that DB2 requires to run.

This section will tell you the out-of-the-box preparation work that you need to
do with your particular Linux distribution to enable it for DB2 Version 6.1.
Once your Linux workstation is enabled for DB2, this section will take you
through a basic installation and configuration where you can install DB2,
create a sample database, and access data from this database using SQL.

As the Linux operating system matures, and relationships strengthen
between IBM and the distribution vendors, you can expect to see many of
these problems disappear. Until then, save yourself a lot of time by carefully
reading this chapter. You will be on your way to using DB2 in no time at all.

The following sections describe the steps that you must take to prepare your
Linux workstation for a DB2 Installation. Each distribution-specific section
will note the Linux installation type that was used. The installation type that
you installed may be different. If a package was included in the installation
type used in this chapter, but does not exist on your installation (because you
selected a different installation type), you can install the required package
from the distribution CD-ROM.

5.9.1 Caldera OpenLinux Version 2.2 or Version 2.3
Installing DB2 on the Caldera Open Linux (or simply Caldera) Version 2.2 All
Recommended Packages distribution was somewhat challenging. Most of the

Despite its name, the Red Hat package manager (RPM) is a tool used on
all distributions. This can cause some confusion. Each Linux distribution
described in this chapter comes with the required RPM package installed
as part of the operating system.

Red Hat package manager

Some distribution even have their own naming conventions. For example,
SuSE Version 6.1 refers to the required glibc package as shlibs.

glibc and shlibs
40 Linux for WebSphere and DB2 Servers

problems that you will encounter have been fixed for the Caldera Version 2.3
release. (We used the Standard Installation type for Caldera Version 2.3.)

The pdksh package, required for the DB2 Installer program to run, is missing
from Caldera Version 2.2 and is supplied on the Caldera Version 2.3
distribution media (though it was not part of the Standard Installation).
Unfortunately, Caldera's pdksh package is not compatible with DB2. In the
coming months, you should expect to see this problem fixed and a compatible
pdksh package available for download from Caldera's ftp site at
ftp.calderasystems.com/pub/. For now, you can get this package (called
pdksh-5.2.13-3.i386.rpm) from the University of North Carolina's MetaLab
site at:
www.metalab.unc.edu/pub/Linux/distributions/redhat/redhat-6.0/i386/RedHat/

RPMS/.

Because this is a Red Hat package, you will receive a dependency error on
the glibc package when you try to install it. The glibc package is automatically
installed with both versions of Caldera. You can therefore ignore this error; it
is a result of different naming conventions between distribution vendors. To
bypass the error, you will have to install this package using the no
dependencies option (for example, the rpm -i --nodeps command). Refer to
your Linux documentation for information on how to install this package using
RPM.

Both Caldera Version 2.2 and Version 2.3 are installed with the libstdc++
2.9.0 library. As previously mentioned, DB2 requires libstdc++ 2.8.0 to run (at
the time this book was written, more recent versions of this package were not
supported). Caldera Version 2.3 comes with the required libstdc++ 2.8.0
library (called libstdc++-compat-2.8.0-1.i386.rpm). This library is available on
the Caldera Version 2.3 distribution media (located in the /col/contrib/RPMS
directory) and can be installed using RPM. Caldera Version 2.2 does not ship
with this library. You can download this library from their ftp site at
ftp://ftp.calderasystems.com/pub/openlinux/2.3/contrib/RPMS/. Refer to your
Linux documentation for information on how to install this package using
RPM.

Internally, DB2 requires a file called libcrypt.so.1. Problems that arose from
US export laws caused Caldera Version 2.2 to ship without this file. This
problem has been fixed for Caldera Version 2.3. To resolve this problem on a
workstation that is running Caldera Version 2.2, download the package called
glibc-crypt-2.1-3i.i386.rpm from the Linux Land ftp site at:
ftp://ftp.linuxland.de/pub/OpenLinux/crypto/2.2/RPMS/. Refer to your Linux
documentation for information on how to install this package using RPM.
Hardware and software setup 41

You are now ready to install DB2 on a workstation that is running Caldera
Open Linux Version 2.2 or Version 2.3.

5.9.2 Red Hat Linux Version 5.2 or Version 6.0
The Red Hat Version 5.2 or Version 6.0 Server distributions are the easiest to
enable for DB2. The only pitfall from the installation is the missing pdksh
package that is required to run the DB2 Installer program. This package is
available on the Red Hat Version 5.2 and Version 6.0 distribution media (in
the /RedHat/RPMS directory) and can be installed using RPM. Refer to your
Linux documentation for information on how to install this package using
RPM.

You are now ready to install DB2 on a workstation that is running Red Hat
Version 5.2 or Version 6.0,

5.9.3 TurboLinux Version 3.6
The TurboLinux Version 3.6 Workstation distribution had some hurdles to
overcome in order to enable it for DB2. However, there is a downloadable fix
that is available from the Web. Save yourself a lot of trouble and download
this fix. The fix is a compressed and tarred file called tl36_instfix.tar.Z (the
second character in the downloadable fix is the letter ’l’, not the number ’1’)
and is available at ftp://ftp.software.ibm.com/ps/products/db2/tools/. A
README file for this fix (called tl36_instfix.readme.txt) can be viewed from
this URL and includes complete instructions on how to implement this fix.

When you have downloaded the DB2 Installer program fix, you need to add
the pdksh package. This was the only package that was missing from the
base workstation installation. This package is available on the Turbo Linux
distribution media (located in the /TurboLinux/RPMS directory) and can be
installed using RPM. Refer to your Linux documentation for information on
how to install this package using RPM.

You are now ready to install DB2 on a workstation that is running TurboLinux
Version 3.6.

5.9.4 SuSE Linux Version 6.1
The SuSE Version 6.1 Network Oriented System distribution is fairly simple to
enable for DB2, but initially confusing. Thanks to our overcome frustrations, you
will not have to worry about the confusing part. We installed the SuSE Network
Oriented System and noticed that some of the users that the DB2 Installer
program would try to create already exist. As it turns out, SuSE packages a Beta
version of DB2 Universal Database Version 5.2 with the SuSE Version 6.1
42 Linux for WebSphere and DB2 Servers

distribution (DB2 Universal Database is not part of the Network Oriented System
installation type). To facilitate the installation, SuSE creates the default DB2
users during any installation of their distribution. This causes some problems
when performing a default DB2 Version 6.1 installation because the default user
names cannot be created. To make matters worse, we could not find any
information on the passwords assigned to the users (they are not the standard
DB2 default passwords) and some of the settings that SuSE implements for DB2
do not work. It is quite confusing, and in the end, you are far better off to remove
the users created by the default SuSE installation and then proceed to install
DB2. To remove the default DB2 users, enter the following commands:

userdel db2inst1
userdel db2fenc1
userdel db2as

DB2 requires glibc Version 2.0.7 or higher to run. The SuSE distribution comes
with this package; however, it refers to this package by a different name. SuSE
calls this package shlibs. This causes problems because the DB2 Installer
program fails to recognize the existence of the required glibc package, and
ultimately fails. A "dummy" glibc RPM is included on the DB2 CD-ROM. If you
install this package, the installation will run smoothly. The package is called
glibc-2.0.7-0.i386.rpm and is located in the /db2/install/dummyrpm directory on
the DB2 CD-ROM. Refer to your Linux documentation for information on how to
install this package using RPM.

You are now ready to install DB2 on a workstation that is running SuSE
Version 6.1.

5.10 Performing the installation

Now that your Linux workstation is DB2-enabled, you are ready to install DB2
Universal Database Version 6.1. Sometimes, display problems can occur
when running the DB2 Installer program. To refresh the current screen at any
time, press Ctrl+L. To avoid most potential display problems, install DB2
through a virtual console session (a terminal window outside of the graphical
interface that most Linux distributions are installed with). To change to a
virtual console session, press Ctrl+Alt+F1. To change back to the graphical
interface, press Ctrl+Alt+F7 1 (your particular Linux distribution may differ;
refer to your Linux documentation for more information).

To install DB2, perform the following steps:

1. Log on to the Linux workstation as root.

1 On Caldera Open Linux the graphical console session usually resides in F8.
Hardware and software setup 43

2. Insert the DB2 Universal Database Version 6.1 CD into the CD-ROM
drive.

3. Mount the CD by entering the following command:

mount -t iso9660 -o ro /dev/cdrom /mnt/cdrom

The /mnt/cdrom path is the default CD-ROM mount point for any Linux
distribution (except SuSE) as defined by the /etc/fstab file. On SuSE
Version 6.1, by default, the CD-ROM must be mounted on the /cdrom
directory.

4. Change focus to the mounted CD-ROM directory.

If you are installing DB2 for Turbo Linux Version 3.6, you would change
to the directory that you created for the installation fix (for example,
/tmp/image). Refer to the README provided with the downloadable fix
for more information.

5. Enter the ./db2setup command to begin the installation. The Install
DB2 V6 window opens:

Even if you are installing DB2 on a workstation that is running Turbo
Linux Version 3.6, you still need to mount the CD-ROM. The image
created by the install fix links to the DB2 CD-ROM.

Note
44 Linux for WebSphere and DB2 Servers

Figure 17. DB2 install screen

6. Press the Tab key to change the highlighted option and the Enter key to
select or deselect an option. For more information or assistance during
the installation of DB2, select Help.

From the product list, select the DB2 product that you want to install. To
install DB2 Universal Database Enterprise Edition, select DB2 UDB
Enterprise Edition and then OK. If you are not planning to access
data that resides on a host (MVS, VM, OS/390) or AS/400 machine,
you can select DB2 UDB Workgroup Edition. DB2 Enterprise Edition
contains all of the functionality available with DB2 Workgroup Edition,
but also includes the bundled software required to access host or
AS/400-based DB2 databases.

Install DB2 V6

[OK] [Cancel] [Help]

[Customize. . .]

Select the products you are licensed to install. Your Proof of
Entitlement and License Information booklet identify the products for
which you are licensed.

To see the preselected components or customize the selection, select
Customize for the product.
[] DB2 Administration Client
[] DB2 UDB Workgroup Edition
[*] DB2 UDB Enterprise Edition
[] DB2 Connect Enterprise Edition

To choose a language for the following components, select Customize for
the product.

DB2 Product Messages [Customize. . .]
DB2 Product Library

: Customize. . . :
: Customize. . . :
[Customize. . .]
: Customize. . . :
Hardware and software setup 45

For the purposes of this example, select DB2 UDB Enterprise Edition
and then OK. The Create DB2 Services window opens.

7. Select the Create a DB2 Instance option. This option will create an
instance and a user that will have System Administrative (SYSADM)
authority on the instance. Enter a password for the db2inst1 user and
verify it by retyping this password in the field provided.

The SYSADM user has complete control over an instance and any
databases that reside within it. For more information on DB2
authorities, refer to your DB2 product documentation.

8. Select the Properties option.

9. Select the Create a sample database for a DB2 Instance option and
then OK.

10.Select OK.

11.You will be asked to create a user that will be used to execute
user-defined functions (UDFs) and stored procedures. Enter a
password for the db2fenc1 user, verify it by retyping the password in
the field provided, and select OK. You are returned to the main Create
DB2 Services window.

12.Select the Create the Administration Server option. Enter a
password for the db2as user, verify it by retyping this password in the
field provided, and select OK.

The Administration Server is used to automate the configuration of
connections to DB2 databases and to enable the remote administration
tools. For more information on the Administration Server and the
available administration tools, refer to your DB2 product
documentation.

13.A pop-up window will appear informing you of the DB2 system name for
your computer. Select OK.

14.You are returned to the Create DB2 Services window. Select OK.

15.The Summary Report window opens. This window lists all of the
options that you have selected for installation. To review the entire list,

If you want to install the DB2 documentation, select DB2 Product
Library and then Customize. You will be given the option to install the
documentation in a variety of languages.

Note
46 Linux for WebSphere and DB2 Servers

use the cursor keys to scroll the contents. When you are finished,
select Continue.

16.If you are satisfied with the installation and configuration selections that
you have made, select OK. If you would like to change some of the
settings that you selected, select Cancel.

17.When the installation completes, the Status Report window opens. This
window lists all of the actions performed by the DB2 Installer program
and notes if each task was completed successfully. To review the entire
list, use the cursor keys to scroll the contents.You can review a log of
installation activity by selecting View Log. When you are finished,
select OK, then Close, and dismiss any remaining windows by
selecting OK.

5.10.1 Verifying the installation
Now that you have successfully installed DB2, verify the installation by
accessing data from the sample database (called SAMPLE) that was created
during the installation.

To access data from the SAMPLE database, perform the following steps:

1. Log on to the system as a user that has System Administrative (SYSADM)
authority on the instance. You created this user account when you
installed DB2. The default username was db2inst1.

2. Ensure that the database manager has been started by entering the
db2start command2.

3. Enter the following commands to connect to the sample database and
retrieve a list of all the employees that work in department 20:

db2 connect to sample
db2 "select * from staff where dept = 20"

4. Enter the following command to reset the database connection:

db2 connect reset

Congratulations! You have successfully installed and configured DB2 on your
Linux workstation and are ready to start using the world's leading database
on the world's most utilized platform for e-commerce.

You should be quite proud of yourself, as this is not a trivial task. Many
computer people around the world will appreciate (or envy) your new skill.

2 During a default DB2 installation, the db2inst1 instance is configured to automatically start after the installation
completes.
Hardware and software setup 47

The remainder of this book will show how to implement a basic e-business
solution using DB2, WebSphere, and Linux.

5.11 Deinstalling DB2 Universal Database

During our experiments, we found it useful to not only know how to install a
product, but how to remove a product as well. The steps in this section
describes the basic tasks in removing a DB2 installation from your Linux
workstation.

5.11.1 Step 1. Stop and remove the Administration Server
You must stop the Administration Server, if it exists, before you remove a DB2
product from your workstation. For the purposes of this book, we recommend
that you drop the Administration Server as well, although this is not a
requirement. Some users may choose to back up the Administration Server
for later use. For more information, refer to your DB2 product documentation.

To stop and remove an Administration Server, perform the following steps:

1. Log on to the system as the user account that is associated with the
Administration Server (by default, this is the db2as username).

2. Ensure that this is the user account that owns the Administration
Server by entering the following command:

dasilist

This command should return output that matches the name of the user
account that is associated with the Administration Server and that you
are logged in as. If it doesn’t, then you are not logged on to the system
with the correct user account. If this command returns no output, an
Administration Server does not exist on your workstation.

3. Stop the Administration Server be entering the following command:

db2admin stop

4. Log out.

5. Log on to the system as a user with root authority.

6. Remove the Administration Server by entering the following command
in the /usr/IBMdb2/V6.1/instance directory:

./dasidrop ASNAME

where ASNAME is the name of the user account that is associated with
the Administration Server (by default, this is the db2as username).
48 Linux for WebSphere and DB2 Servers

7. Optionally, remove the user account associated with the Administration
Server by entering the following command:

userdel db2as

8. Log out.

You have successfully dropped the Administration Server.

5.11.2 Step 2. Stop and remove any instances
You must stop all instances before you remove a DB2 product from your
workstation. For the purposes of this book, we recommend that you drop all
instances, although this is not a requirement. Some users may choose to
back up their instances for later use. For more information, refer to your DB2
product documentation.

To stop and remove any instances on your system, perform the following
steps:

1. Log on to the system as a user with root authority.

2. Obtain a list of all the instances on your system by entering the
following command in the /usr/IBMdb2/V6.1/instance directory:

./db2ilist

This command should return a list of all instances that are on your
workstation. Make note of this list, as you will need to remember these
names in order to remove all of the instances. If this command does not
return any output, then there are no instances on your workstation.

3. Log on and out of the system as the instance owner for each instance
that was returned to you when you ran the db2ilist command in the
previous step. As you log on to each instance, enter the following
command:

db2stop

4. Log back on to the system as a user with root authority.

5. Remove each instance from the system by entering the following
command in the /usr/IBMdb2/instance directory:

./db2idrop INSTNAME

where INSTNAME is the name of each instance that you want to drop.

The db2idrop command removes the instance specified from the list of
instances and removes the INSTHOME/sqllib directory (where
INSTHOME is the home directory of the instance owner).
Hardware and software setup 49

6. Optionally, remove any instance’s associated user account (if used only
for that instance) by entering the following command:

userdel INSTNAME

where INSTNAME is the name of the instance; for example, db2inst1.

7. Log out.

You have successfully dropped all of the instances on your workstation.

5.11.3 Step 2. Deinstall DB2
Now that you have stopped and removed the Administration Server and all
instances, perform the following steps to deinstall DB2:

1. Log on to the system as a user with root authority.

2. Insert the DB2 Universal Database Version 6.1 CD into the CD-ROM drive.

3. Mount the CD by entering the following command:

mount -t iso9660 -o ro /dev/cdrom /mnt/cdrom

The /mnt/cdrom path is the default CD-ROM mount point for any Linux
distribution (except SuSE) as defined by the /etc/fstab file. On SuSE
Version 6.1, by default, the CD-ROM must be mounted in the /cdrom
directory.

4. Change focus to the mounted CD-ROM directory.

If you are installing DB2 for Turbo Linux Version 3.6, you would change to
the directory that you created for the installation fix (for example,
/tmp/image). Refer to the README provided with the downloadable fix for
more information.

5. Enter the following command to deinstall DB2:

db2_deinstall -n

6. Log out.

You must stop any outstanding DB2 processes before removing DB2 from
your workstation.

Note
50 Linux for WebSphere and DB2 Servers

5.12 WebSphere Application Server - installation and configuration

Once the correct Web server has been installed and verified you can proceed
with this step. WebSphere 2.0.3 requires Java 116 to be installed and this is
now supplied as part of the WebSphere install package.

The first install step is to extract the WebSphere distribution archive into a
directory you can install it from. We set up an install directory called
/home/was_install (see Figure 18). Having unzipped and un-tarred the archive
file into this directory, you should end up with the four *.rpm files shown.
Alternately you may have received WebSphere on a CD, in which case you
can mount the CD and install the WebSphere *.rpm files directly from it.

r

Figure 18. WebSphere 2.0.3 install package un-tarred in directory /home/was_install

Open an X-term or a Linux console and run the following rpm commands. Pay
close attention to any warning messsages. These will mostly be about
prerequisite software that may be needed or will be about environment
variables that need to be set for the install to proceed.

Do not try to install WebSphere using visual installers. These may fail to
detect warning messages issued during the install process.

Note
Hardware and software setup 51

5.12.1 WebSphere install steps
1. rpm -i ibm-jdk-l116-199906300917.i386.rpm

2. export JAVA_HOME=/opt/ibm-jdk-l116

3. rpm -i IBMWebAS-core-2.03-1.i386.rpm

4. rpm -i IBMWebAS-ibm-httpd-2.03-1.i386.rpm

Figure 19. A standard WebSphere install

Figure 19 shows the steps. Figure 20 shows another example. The core
module expects JAVA_HOME to be set. The IBMWebAS-apache module
looks for file /etc/httpd/conf/httpd.conf while IBMWebAS-ibm-http looks for
/opt/IBMHTTPServer/conf/httpd.conf. If either cannot be found WebSphere
asks you to set an environmernt variable called HTTPD_CONF_DIR and then
asks you to try again.
52 Linux for WebSphere and DB2 Servers

Figure 20. Another WebSphere install example

Figure 21 shows the items added to the Apache configuration file after we
installed the IBMWebAS-apache configuration module. The same changes
are applied to /opt/IBMHTTPServer/conf/httpd.conf if the IBMWebAS-ibm-http
configuration module is installed instead of the Apache module.
Hardware and software setup 53

Figure 21. Changes made to Apache config files by the WebSphere install

See Figure 22 for a quick way of stopping and starting Apache.

Figure 22. A quick way to stop WebSphere and Apache and start them again

Next we checked out Apache and WebSphere by accessing the following two
Web sites: http://localhost/ and http://localhost/servlet/snoop. Sample
output from both these commands is shown in Figure 13 on page 34, Figure
14 on page 35 and Figure 25 on page 57.

For IBMHTTPServer use
apachectl script instead
of the httpd script.
54 Linux for WebSphere and DB2 Servers

Figure 23. Part of WebSphere’s bootstrap.properties file

WebSphere creates a special file in its home directory that is called
/opt/IBMWebAS/properties/bootstrap.properties. During our install we noticed
that WebSphere had incorrectly set up the java.libpath pointer to a wrong
path. We corrected this as shown in Figure 23. You can see the error line
commented out and the correct line below it. There is no green_threads
sublibrary in IBM’s jdk116, only a native_threads sublibrary.

The file bootstrap.properties also has parameters for setting WebSphere
tracing on or off. It is worth looking through the bootstrap.properties file.

Added DB2
java classpath

Bad ref to green_threads
libpath was fixed here

We also added libpath and classpath references to DB2 libs. These are
important if you plan to run DB2 on the same computer as WebSphere.

Note
Hardware and software setup 55

Figure 24. Lines we needed to add to get WebSphere to recognize DB2

A major problem that we encountered was to do with WebSphere starting up
during the Linux boot sequence, and not picking up a DB2 environment
variable identifying the DB2INSTANCE installed on the same machine.

When this occurs WebSphere will not find DB2. We solved this problem by
adding the lines shown in Figure 24 to the httpd or apachectl startup script in
the /etc/rc.d/init.d startup scripts directory.

Setting up apachectl script for the IBM HTTP Server was fully explained in
5.7.3, “Setting up IBM HTTP Server startup script” on page 35.

If you are using IBM HTTP Server
then you should apply these lines
to the file called apachectl that you
should have placed in /etc/rc.d/init.d

Added lines to httpd
startup script
56 Linux for WebSphere and DB2 Servers

Figure 25. After WebSphere is installed, test it with the snoop servlet

Figure 25 shows the output from the snoop servlet, which is very useful for
testing that WebSphere is actually running.

It returns information about the client browser’s environment. The servlet
code is useful for seeing how this information can be accessed and
processed. The source code for the snoop servlet is provided by WebSphere
in the WebSphere servlets directory.
Hardware and software setup 57

5.13 VisualAge for Java for Linux - installation and configuration

This product was the easiest we had to install. All that is needed is to log in as
yourself and copy the va4java tar file to your home directory. Note it must be
your home directory. Then un-tar it, that is all that you need do. To test, you
can click (KDE) or double-click (GNOME) on the vajide icon that was placed
in your home directory folder. The vajide icon can also be copied to your
desktop as shown in Figure 27 and Figure 28.

Figure 26. VisualAge shown installed and invoked on Caldera OL 2.2 using KDE desktop

Do not install VA for Java while logged in as root. Log in as a normal user.
Also you must install it in your home directory.

Note

click the
vajide icon
to start
VisualAge
58 Linux for WebSphere and DB2 Servers

Figure 27. Red Hat KDE showing vajide as an icon that can be single-clicked to start VisualAge

Figure 27 shows where we copied the vajide icon from our home folder to the
desktop where (using KDE). It can be single-clicked to start VisualAge
running.

Copied vajide onto the desktop
where it can be single-clicked
in order to run Visual Age 4 Java

Visual Age icon ’vajide’
was copied to the desktop
where it can be run by
clicking it
Hardware and software setup 59

Figure 28 shows the same being done but on Red Hat’s GNOME desktop.
However, on GNOME you need to double-click the icon to run VisualAge.

Selection behavior can be configured to suit individual tastes, so that the
number of clicks used to start an application can be tailored.

Figure 28. Red Hat GNOME desktop with vajide as an icon that can be double-clicked to run VisualAge

vajide icon copied
to GNOME desktop
where it can be
double-clicked
60 Linux for WebSphere and DB2 Servers

Part 2. Programming model

In this part we discuss the Java servlet programming model.
© Copyright IBM Corp. 1999 61

62 Linux for WebSphere and DB2 Servers

Chapter 6. Web programming model

This chapter discuss the following topics:

• Overview of Java servlets
• Structure of the Java servlet API
• Java Servlets Development Kit from SUN
• WebSphere Application Server Servlets API extensions
• Servlets with JSPs

6.1 Overview of Java servlets

Servlets are protocol and platform-independent server-side software
components, written in Java. Servlets run on a Web server machine inside a
Java-enabled server, that is, a server able to start the Java Virtual Machine
(JVM) in order to support the use of Java servlets. They dynamically extend
the capabilities of the server because they provide services over the Web
using the request-response paradigm.

Servlets were initially supported in the Java Web Server from JavaSoft. Since
then, several other Java-based Web servers have supported the standard
servlet API. Servlets were introduced to interactively view and modify data
and to generate dynamic Web content. From a high-level perspective, the
process flow would be:

• The client sends a request to the server.

• The server sends the request information to the servlet.

• The servlet builds a response and passes it to the server. That response is
dynamically built and the contents of the response usually depend on the
client's request.

• The server sends the response back to the client.

The flow is shown in Figure 29 on page 64.
Web programming model 63

Figure 29. Process flow from a high-level Perspective

Servlets look like ordinary Java programs that begin importing some
particular Java packages that belong to the Java servlet API. Since servlets
are object bytecodes that can be dynamically loaded off the Net, we could say
that servlets are to the server what applets are to the client. But since
servlets run inside servers, they do not need a graphical user interface (GUI).
In this sense servlets are also called faceless objects.

6.1.1 Advantages of servlets
Java servlets offer a lot of advantages:

• A servlet can interact with other resources (files, databases, applets,
applications written in Java or in other languages) to construct the
response that will be sent back to the client and, if needed, to save
information about the request-response interaction.

• With a servlet approach, the server can grant full access to local facilities,
such as databases, and trust that the servlet itself will control the amount
and precise nature of access that is effectively afforded to external users.
So, for example, the Java servlet API provides all the methods to monitor
and verify the origin of all requests. Moreover, on the Internet Connection
Secure Server, servlets cannot be loaded from the network. They must
reside on the local system. As a consequence, if a proprietary algorithm is
built into a servlet, the code never passes beyond the boundaries of the

Client

Servlet

Resources

SERVER

Request Response
64 Linux for WebSphere and DB2 Servers

server; only the results that it produces do. If the code is not passed to the
client, it cannot be saved or disassembled.

• Servlets can be client programs of other services, for example, when they
are used in distributed application systems.

• It is possible to invoke them from a local or remote disk across the
network. All the examples that are described in this chapter demonstrate
this.

• Servlets can be chained. This means that one servlet can call another
servlet, thus becoming its client. It can also call several servlets in
sequence.

• Servlets can be dynamically called from within HTML pages.

• The Servlet API is protocol-independent. It does not assume anything
about the protocol used to transmit it on the Internet.

• Like all Java programs, servlets can use all the capabilities of the
object-oriented Java language:

1. They can be rapidly developed.

2. Lack of pointers promotes robust applications (unlike C).

3. A servlet service routine is only a thread and not an entire operating
system process. That is the reason why a servlet can handle
connections with multiple clients, accepting requests and
downloading responses back to multiple clients. This is a more
efficient mechanism than using CGI.

4. Servlets are portable. They run on a variety of servers without
needing to be rewritten.

• Memory access violations are not possible, so faulty servlets will not crash
servers.

You can take the same Java source code and compile it, using the Java
compiler javac, on different platforms (AIX, Solaris, DOS, Windows,
OS/2, Macintosh, and more) without having to make any changes. You
can even compile it on one platform and then use the same bytecode
class file on different platforms.

Note
Web programming model 65

6.2 Structure of the Java servlets

Servlets are ordinary Java programs, but they use some additional packages
found in the Java servlet API. When you write the code for a Java servlet, you
must import at least one of the following two packages:

• javax.servlet
• javax.servlet.http

These two packages contain seven interfaces, five classes, and two
exceptions. Before going on with this chapter, it is helpful to have a visual
idea of the structure of the Java servlet API. The following table should help:

Table 2. Structure of the Java servlet API

As you can see, the amount of material introduced by the Java servlet API is
not too big. Nevertheless, these few interfaces, classes and exceptions are
able to make a Java server very powerful.

Table 2 shows 14 items. It would be good to have a general description of
each of them before moving onto the next section.

javax.servlet javax.servlet.http

Interfaces Servlet
ServletConfig
ServletContext
ServletRequest
ServletResponse

HttpServletRequest
HttpServletResponse

Classes GenericServlet
ServletInputStream
ServletOutputStream

HttpServlet
HttpUtils

Exceptions ServletException
Unavailable Exception

Generally speaking, a Java class is composed of two things: variables and
methods. In addition, all Java variables and methods must be a member of a
class. Instance variables are what describes an object and typically, in pure
object-oriented languages such as Java, they are encapsulated. That means
that only the objects themselves can change these variables. To do this,
objects use functions called methods.

Note
66 Linux for WebSphere and DB2 Servers

Note: The description of the Java servlet API provided here is based upon
the official information located at: http://www.javasoft.com.

6.2.1 Interface javax.servlet.Servlet
The public interface Servlet interface is used to develop servlets and it is very
important. In fact, all servlets implement this interface, usually by extending
either the GenericServlet class or the HttpServlet class, which is a
GenericServlets descendent. The Servlet interface defines the method init()
to initialize a servlet, the method service() to receive and respond to client
requests, and the method destroy() to unload the servlet and its resources.
These are known as life cycle methods. Other methods defined by the servlet
interface are getServletConfig(), which returns a ServletConfig object
containing any initialization parameters and startup values for this servlet and
getServletInfo(), which returns a string containing information about the
servlet.

6.2.2 Interface javax.servlet.ServletConfig
The public interface ServletConfig interface is implemented by services in
order to pass configuration information to a servlet when it is first loaded. The
ServletConfig interface can also be implemented by servlets. For example,
the GenericServlet does this. When implemented by a servlet, the methods in
the interface make getting the configuration data more convenient.

The ServletConfig interface provides two methods to handle the configuration
data: getInitParameterNames() and getInitParameter().
getInitParameterNames() returns the names of the servlet's initialization
parameters as an enumeration of strings or an empty enumeration if there are
no initialization parameters. By passing each name to the getInitParameter()
method, you can retrieve the single value for a specified parameter or null if
the parameter does not exist.

Of course, if you already know the name of the servlet initialization
parameters, you do not need to use the getInitParameterNames() method to
retrieve those names, but you can directly call the getInitParameter() method
to obtain the relative values.

The ServletConfig interface also provides the getServletContext() method,
which returns a ServletContext object. A servlet can implement
getServletContext() by writing:
Web programming model 67

Using the public interface ServletConfig provides access to the servlets
context with a single call to the method getServletContext().

6.2.3 Interface javax.servlet.ServletContext
The public interface ServletContext gives servlets access to information
about their environment. In fact it provides the following methods:

• getAttribute() returns the value of the named attribute of the network
service or the value null, if the attribute does not exist.

• getMimeType() returns the mime type of the specified file or null if not
known.

• getRealPath() applies alias rules to the specified virtual path and returns
the corresponding real path.

• getServerInfo() returns the name and version of the network service under
which the servlet is running.

• getServlet() returns the servlet of the specified name or null if not found.

• getServlets() returns an enumeration of servlet objects in this server.

The information returned by all these methods relates to the servlets
environment.

The ServletContext interface also allows servlets to log significant events.
Servlets writers decide what data to log using the log() method, which writes
the given message string to the servlet log file.

The ServletContext interface is implemented by services and used by
servlets. Servlets get the ServletContext object with the getServletContext()
method of the ServletConfig object. This object is provided to the servlet at
initialization and is accessible using the servlets getServletConfig() method.

6.2.4 Interface javax.servlet.ServletRequest
The public interface ServletRequest interface is used to get data from the
client to the server from a service request. Network service developers
implement the ServletRequest interface. Its methods are then used by the
servlets when the service() method is executed. The ServletRequest object is
passed as an argument to the service() method. Some of the data provided

public ServletContext getServletContext() {
return getServletConfig().getServletContext();

}

68 Linux for WebSphere and DB2 Servers

by the ServletRequest object includes parameter names
(getParameterNames()) and values (getParameterValues()), attributes
(getAttribute()) and an input stream (getInputStream()). Subclasses of
ServletRequest can provide additional protocol-specific data. For example,
HTTP data is provided by the interface HttpServletRequest, which extends
ServletRequest.

6.2.5 Interface javax.servlet.ServletResponse
The public interface ServletResponse interface is used for sending data from
the servlets service() method back to the client. Network service developers
implement this interface. Its methods are then used by servlets when the
service() method is run, to return data to clients. The ServletResponse object
is passed as an argument to the service() method. This interface provides the
method getOutputStream(), which returns an output stream for writing
response data.

6.2.6 Interface javax.servlet.http.HttpServletRequest
The public interface HttpServletRequest extends ServletRequest interface
represents an HTTP servlet request. It gets data from the client to the servlet
for use in the service() method. It allows the HTTP-protocol specified header
information to be accessed from the service() method.

6.2.7 Interface javax.servlet.http.HttpServletResponse
The public interface HttpServletResponse extends ServletResponse interface
represents an HTTP servlet response. It allows a service() method to
manipulate HTTP protocol-specified header information and return data to its
client.

This interface is often used when the Web server must send the response
back to the client's browser. An example of some code that will work with this
interface inside the service() method follows:

The response is the HttpServletResponse object passed as a parameter to
the service() method.

ServletOutputStream out = response.getOutputStream();
response.setContentType("text/html");
out.println("How to use the interface HttpServletResponse");
out.close();
Web programming model 69

6.2.8 javax.servlet.GenericServlet
The GenericServlet class implements the servlet interface and the
ServletConfig interface. Servlet developers typically subclass GenericServlet
or its descendent HttpServlet.

A servlet that communicates directly with an applet on the client's browser is
an example of a servlet that would not use HTTP for its communications. You
would create a servlet like that by subclassing GenericServlet instead of
HttpServlet.

The GenericServlet provides simple versions of the life cycle methods init()
and destroy() and the methods in the ServletConfig interface. The servlet
developer must override only the service() method.

6.2.9 Class javax.servlet.ServletInputStream
The public abstract class ServletInputStream extends InputStream class is an
abstract class that will be implemented by network services developers. An
object from this class provides an input stream for reading servlet requests
and it provides an efficient readLine() method. For some application
protocols, such as the HTTP POST and PUT methods, servlet developers use
the input stream to get data from clients. They access the input stream using
the ServletRequest's getInputStream() method available from within the
servlet's service() method.

6.2.10 Class javax.servlet.ServletOutputStream
The public abstract class ServletOutputStream extends OutputStream class
is an abstract class that will be implemented by network services developers.
An object in this class provides an output stream for writing servlet
responses. Servlet writers use the output stream to return data back to

public abstract class GenericServlet
extends Object
implements Servlet, ServletConfig

If you are writing a servlet that interacts with HTML Web pages containing
forms, you will probably create your servlet by subclassing HttpServlet. For all
other servlets you will probably start by subclassing GenericServlet.

Note
70 Linux for WebSphere and DB2 Servers

clients. They access it using the ServletResponse's getOutputStream()
method available from within the servlet's service() method.

6.2.11 Class javax.servlet.http.HttpServlet
The public abstract class HttpServlet extends GenericServlet class is called
the HttpServlet class. It is an abstract class that simplifies writing HTTP 1.0
servlets. It extends the GenericServlets base class. Servlet developers
implement the servlet interface usually by extending either the GenericServlet
class or the HttpServlet class. Because it is abstract, servlet writers must
subclass it and override at least one method.

You subclass the HttpServlet class typically when your servlet must interact
with HTML pages containing forms. The information entered into the form on
the client Web page is passed to the servlet for processing. Two different
HTML methods can be used to do this: GET and POST, depending on what is
coded on the form present in the HTML page on the client.

The methods in the HttpServlet class that are normally overridden are:

• doGet() - If the information entered in the form on the client’s browser is
provided by the GET method.

• doPost() - If the information entered in the form on the client’s browser is
provided by the POST method.

It is up to the servlet developer to override the doGet() or doPost() methods in
order to accept the client’s request and give a response back to it.

This class implements the service() method, that in the GenericServlet class
was abstract (see 6.2.8, “javax.servlet.GenericServlet” on page 70).
Therefore, servlet developers can accept it if they are supporting HTTP 1.0.
To support HTTP 1.1 methods (for example, OPTIONS, PUT, DELETE, and
TRACE) they will probably override the service() method and handle those
additional HTTP methods directly.

6.2.12 Class javax.servlet.http.HttpUtils
The class that provides a collection of static utility methods useful to HTTP
servlets is public class HttpUtils extends Object. For example,
getRequestURL() takes an HttpServletRequest object as an argument and
reconstructs the URL used by the client to make the request. This class also
provides two other utilities:

1. parsePostData() - Parses the data that is posted to the server using the
HTTP POST method from a form in the client's browser.
Web programming model 71

2. parseQuesryString() - Parses the query string.

Both these methods return a hashtable object that maps keys to values.

6.2.13 Exception javax.servlet.ServletException
The exception class that is provided to indicate a servlet problem is public
class ServletException extends Exception.

6.2.14 Exception javax.servlet.UnavailableException
The exception that indicates that a servlet is unavailable is public class
UnavailableException extends ServletException. There are two types of this
exception:

1. Permanent

The servlet will not be able to handle client requests until some
administrative action is taken to correct a servlet problem. For example,
the servlet might be configured incorrectly or the state of the servlet might
be corrupted.

2. Temporary

The servlet cannot handle requests at this moment, due to a system-wide
problem. For example, another server might be accessible or there may be
insufficient memory or disk storage to handle requests.

Network services might safely treat both types of exceptions as permanent,
but it is better to have the option to indicate a temporary outage to provide
more flexibility as well as a possible means to report on the types of outages.
For example, requests to the servlet might be blocked or deferred for an
amount of time suggested by the servlet, rather than being rejected until the
service itself restarts.

6.3 Java Servlets Development Kit from Sun

The Java Servlet Development Kit (JSDK) is a simple command-line
development environment for developing and testing servlets, the
javax.servlet package sources. The kit can be downloaded from
http://www.javasoft.com/products/servlet/index.html

6.4 WebSphere Application Server Servlets API extensions

Servelet model programming offers many advantages over CGI concept.
However, servlets connecting to database servers can generate many
72 Linux for WebSphere and DB2 Servers

connections to the database server and can affect the database performance.
WebSphere Application Server Servlets API extensions include connection
manager package that helps servlets to management connections to the
database server.

This section summarizes IBM Webpshere API extension. Complete
documentation can be found on IBM WebSphere Server’s Documentation
Center, or online at:

http://www.software.ibm.com/webservers/

package com.ibm.servlet.connmgr
Manages pools of reusable connections to data servers, such as an IBM DB2
database. A connection management feature that caches and reuses
connections to your JDBC (Java Database Connectivity)-compliant
databases. When a servlet needs a database connection, it can get one from
the pool of available connections, eliminating the overhead required to open a
new connection for each request.

Interface: IBMConnMgrConstants, Task

Class: IBMConnMgr, IBMConnMgrAdmin, IBMConnMgrNLS,
IBMConnMgrUtil, IBMConnPool, IBMConnPoolSpec, IBMConnSpec,
IBMConnection, IBMJdbcConn, IBMJdbcConnPool, IBMJdbcConnSpec,
IBMPoolHashtable, IBMPoolVector, TaskTimer

Exception: IBMConnMgrException

package com.ibm.servlet.personalization.sam
Register servlets with the IBM WebSphere Application Server and its Site
Activity Monitor (SAM) facility. SAM lets you view Web site activity, and act or
react in real time.

Class: AppPackage

package com.ibm.servlet.personalization.sessiontracking
Configures parameters for session tracking, allowing the application server to
group a series of related requests into an identifiable user session.

Class: IBMSessionData, IBMSessionContextImpl,
IBMHttpSessionBindingListener, IBMHttpSessionBindingEvent

package com.ibm.servlet.personalization.userprofile
Speciies the information to maintain about the people who visit the Web site.
Web programming model 73

Class: UserProfile

package com.ibm.servlet.servlets.personalization.util
Contains classes that enable Web administrators to post site-wide bulletins
and Web visitors to exchange messages.

Class: CheckMessage, GetMessage, GetVariableText, SendMessage,
SetVariableText

6.5 Servlets with JSPs

In the following we discuss how servlets work with JavaServer Pages (JSP).

6.5.1 JavaServer Page (JSP) Overview
IBM WebSphere Application Server supports a powerful dynamic approach to
generate page content: JavaServer Pages (JSP).

JSP is a simple way to generate dynamic content using combinations of
HTML, NCSA, Server-side JavaBean, <SERVLET> tag, in-line Java and JSP
syntax. JSP files look like the standard HTML, XML files, but have .jsp
extensions. See Figure 30.
74 Linux for WebSphere and DB2 Servers

Figure 30. Use JavaServer Page (JSP) to generate dynamic presentation content

6.5.2 Advantages of JSP
An advantage of JSP is that it enables developers to separate business logic
from the GUI presentation. JSP can access server-side code such as
servlets, JavaBeans, inline Java code and Java-based Web applications. This
accessibility allows the JSP developer to reuse components. For example,
developers can share or exchange reusable components that perform
common, day-to-day operations. Another advantage of JSP is it simplifies the
development efforts with tag-based scripts. Because JSP is converted to
Servlet on the server-side, Web designers only need to know a little about
Java programming. They can concentrate their development efforts on the
presentation.

6.5.3 JavaServer Page Specification
There are five categories of JavaServer Page specification: Directive,
Declaration, Scriptlet, Expression and Bean tag.

Server-side include of common text
<!--#include file=OutbackProlog.html -->
<!--#include file=OutbackEpilog.html -->

JSP server-side scripting
<%Chart.show(FQResults.chartData); %>

Static HTML
<p>Results are based ...

Server-side include of dynamic
content

<servlet
name=com.outback.News.current()>
</servlet>

Outback Travel, Inc.

Today's News
Outback
Travel
Announces
Fourth
Quarter
Results

Oct Nov Dec
0

10

20

30

40

50

Expense

Revenue

Profit

Fourth Quarter Results

Results are based on the latest
data available. All results are
preliminary until confirmed by
independent audit.

[Home | Search | Products | Copyright | Trademarks]
Web programming model 75

6.5.3.1 Directive tag, <% @ %>

Use this tag to:

1. Specify the scripting language being used.

2. Specify the interfaces a servlet implements.

3. Specify the classes a servlet extends.

4. Specify the packages a servlet imports.

There are six directives: language, method, import, content_type, implements
and extends.

• language - Specifies the scripting language used for the entire jsp file.
Currently, "java" is the only valid value. Only the first language directive is
evaluated.

An example: <%@ language ="java" %>

• method - Specifies the servlet function name where the embedded Java
code (see the scriptlet section) will be put in the dynamically constructed
servlet (DCS). The scriptlet Java code becomes the body of the specified
method name. The default method is service. Only the first method
directive is evaluated.

An example: <%@ method ="doPost" %>

• import - Specifies the package(s) imported by the DCS. A
comma-separated list of Java language package names or class names
DCS imports. The import directive can be specified multiple times to
import different packages.

An example: <%@ import ="java.io.*,java.util.Hashtable" %>

• content_type - Specifies the MIME type of the generated response. The
default value is text/html. Only the first content_type directive is evaluated.
This directive can be used to specify the character set in which the page is
to be encoded.

An example: <%@ content_type ="text/html; charset=iso-8859-1" %>

• implements - Specifies the Java interface(s) the DCS will implement. The
DCS can specify multiple interfaces using a comma-separated list or
multiple implement directives.

An example: <%@ implements ="javax.servlet.http.HttpSessionContext" %>

• extends - Specifies the name of the Java language class that the DCS
extends. The class must be a valid class and does not have to be a servlet
class. Only the first extends directive is evaluated.

An example: <%@ extends ="javax.servlet.http.HttpServlet" %>
76 Linux for WebSphere and DB2 Servers

6.5.3.2 Declaration tag, <SCRIPT> </SCRIPT>

Use this tag to declare a dynamically constructed servlet’s class-wide
methods and variables. The general syntax is:

<script runat=server>
// declaration of servlet’s class-wide methods and variables
</script>

The attribute runat=server is needed to indicate that the tag is for server-side
processing:

<script runat=server>
// class-wide variable
int i = 0;
String foo = "Hello";

//class-wide method
private void foo() {
// code for private method
}
</script>

6.5.3.3 Scriptlet tag (inline Java code), <% %>

Use this tag to add inline Java code to the DCS’s specified directive method
(see directive tag under method). If the directive method is not specified, the
default method used to add the inline Java code is the service method.

Inline Java code can use four predefined object instances to access an
essential servlet, output and input classes. These are:

1. request - The servlet request class as defined by
javax.servlet.http.HttpServletRequest

2. response - The servlet response class as defined by
javax.servlet.http.HttpServletResponse

3. in - The servlet input reader class as defined by java.io.BufferedReader

4. out - The servlet output writer class as defined by java.io.PrintWriter

An example:

<%
foo = request.getParameter("Name");
out.println(foo);
%>
Web programming model 77

6.5.3.4 Expression tag, <%= >

Use this tag to replace Java language expressions with the values of those
expressions in the dynamically generated page. Expressions specified within
these tags will first be evaluated, then the result will be converted into a string
and then substitute the expression tag. For example:

<%= foo %>

will substitute the value of "foo" in place of the tag.

6.5.3.5 Bean tag1,<bean> </bean>

Use this tag to access server-side JavaBean, and soon Enterprise
JavaBeans. The syntax for the bean tag applies for beans:

1. Created from a serialized file or a class file
2. Referred to from an HTTP session
3. Passed to the page from a servlet

The bean tag syntax is:

<BEAN
name="<lookup name>"
varname="<alternate variable name>"
type="<class or interface name>"
introspect="{yes | no}"
beanName="<file name>"
create="{yes | no}"
scope="{request | session}"
> </BEAN>

name: Attribute used as a key to identify this bean.

varname: This is an optional attribute used to identify the variable name that
will refer to this bean in the current JSP file. If it is not specified, the name of
the variable defaults to the name of the bean as specified in the name
attribute above.

1 The <BEAN> tag from the JSP 0.91 specifiication has been renamed <USEBEAN> in the JSP 1.0 specification.

Between <BEAN> and </BEAN> tag, an optional list of <PARAM> tags can be
specified. The syntax of the PARAM tag is:

<PARAM {beanPropertyName="name" beanPropertyValue="value"}>

See the example Bean tag on the next page.

Note
78 Linux for WebSphere and DB2 Servers

type: Attribute defining the bean’s class or interface. This name is used for
declaring the bean instance. When not specified the value defaults to the type
object.

introspect: When it is not specified, the default value of this attribute is yes
which will examine all request properties. The appropriate setter methods are
called corresponding to the matching properties.

scope: This is an optional attribute which defaults to request when it is not
specified.

• request: This bean is retrieved from the request context. The bean is
set as a context in the request by a servlet invoking this dynamic page
using JavaServer Page API. If the bean is not part of the request
context, then the bean is created and stored in the request context
unless the create attribute is no.

• session: This bean is reused from the current session if present. If not
present and the create attribute is yes, it is created and stored as part
of the session.

create: When it is not specified, the default value of this attribute is yes which
will create the specified bean if not found in the scope. If no is specified and
the bean is not found, an error is returned to the client browser.

beanName: This attribute is the name of the serialized file or class file that
contains the bean. It is used only when the bean is not present in the scope of
the BEAN tag and the value of create is yes.

An example BEAN tag:

<BEAN name="foobar" type="FooClass" scope="request">
<PARAM fooProperty="fooValue" barProperty="1">
</BEAN>

6.5.4 HTML template syntax for variable data
The Application Server HTML template syntax enables you to put variable
fields on your HTML page and have your servlets and JavaBeans dynamically
replace the variables with values from a database when the page is returned
to the browser.
Web programming model 79

The HTML template syntax consists of two tags:

<INSERT> tags for embedding variables in an HTML page

<REPEAT> tags for repeating a block of HTML tagging that contains the
<INSERT> tags and the HTML tags for formatting content

These tags are designed to pass intact through HTML authoring tools. Each
tag has a corresponding end tag. Each tag is case-insensitive, but some of its
attributes are case-sensitive.

The IBM WebSphere Studio makes it easy to develop JSP files that contain
the HTML template syntax. Please see http://www.software.ibm.com for more
information on this product.

6.5.4.1 The basic HTML template systax
The <INSERT> tag is the base tag for specifying variable fields. The general
syntax is:

<insert requestparm=pvalue requestattr=avalue bean=name
property=property_name(optional_index).subproperty_name(optional_index)
default=value_when_null></insert>

Where:

requestparm: The parameter to access within the request object. This
attribute is case-sensitive and cannot be used with the Bean and property
attributes.

requestattr: The attribute to access within the request object. The
attribute would have been set using the setAttribute method. This attribute
is case-sensitive and cannot be used with the Bean and property
attributes.

bean: The name of the JavaBean declared by a <BEAN> tag within the
JSP file.

The value of this attribute is case-sensitive.

When the Bean attribute is specified but the property attribute is not
specified, the entire Bean is used in the substitution. For example, if the

This capability is an IBM extension of JSP to make it easier to reference
variable data. The syntax can only be used in JSP files.

Note
80 Linux for WebSphere and DB2 Servers

Bean is type String and the property is not specified, the value of the
string is substituted.

property: The property of the Bean to access for substitution. The value of
the attribute is case-sensitive and is the locale-independent name of the
property. This attribute cannot be used with the requestparm and
requestattr attributes.

default: An optional string to display when the value of the Bean property
is null. If the string contains more than one word, the string must be
enclosed within a pair of double quotes (for example "HelpDesk number").
The value of this attribute is case-sensitive. If a value is not specified, an
empty string is substituted when the value of the property is null.

Some examples of the basic syntax are:

<insert bean=userProfile property=username></insert>
<insert requestparm=company default="IBM Corporation"></insert>
<insert requestattr=ceo default="Company CEO"></insert>
<insert bean=userProfile property=lastconnectiondate.month></insert>

In most cases, the value of the property attribute will be just the property
name. However, you access a property of a property (subproperty) by
specifying the full form of the property attribute. The full form also gives you
the option to specify an index for indexed properties. The optional index can
be a constant (for example 2) or an index. Some examples of using the full
form of the property tag:

<insert bean=staffQuery property=address(currentAddressIndex)></insert>
<insert bean=shoppingCart property=items(4).price></insert>
<insert bean=fooBean property=foo(2).bat(3).boo.far></insert>

6.5.4.2 The alternate HTML template syntax
The HTML standard does not permit embedding HTML tags within HTML
tags. Consequently, you cannot embed the <INSERT> tag within another.

The HTML tag, for example, is the anchor tag (<A>). Instead, use the HTML
template alternate syntax.

To use the alternate syntax:

1. Use the <INSERT> and </INSERT> to enclose the HTML tag in which the
substitution is to take place.

2. Specify the Bean and property attributes:

To specify the Bean and property attributes, use the form:

$(bean=b property=p default=d)
Web programming model 81

Where b, p, and d are values as described in the basic syntax.

To specify the requestparm attribute, use the form:

$(requestparm=r default=d)

Where r and d are values as described in the basic syntax.

To specify the requestattr attribute, use the form:

$(requestattr=r default=d)

Where r and d are values as described in the basic syntax.

Some examples of the alternate HTML template syntax are:

<insert>

</insert>
<insert>
<a

href="http://www.myserver.com/map/showmap.cgi?country=$(requestparms=co
untry default=usa)
&city$(requestparm=city default="Research Triangle Park")&email=

$(bean=userInfo property=email)>Show map of city
</insert>

The syntax of the <REPEAT> tag is:

<repeat index=name start=starting_index end=ending_index>
</repeat>

Where:

index: An optional name used to identify the index of this repeat block.
The value is case-sensitive.

start: An optional starting index value for this repeat block. The default is
0.

end: An optional ending index value for this repeat block. The maximum
value is 2,147,483,647. If the value of the end attribute is less than the
value of the start attribute, the end attribute is ignored.

The following show how to use the <REPEAT> tag. The examples produce the
same output if all indexed properties have 300 or fewer elements. If there are
more than 300 elements, Examples 1 and 2 will display all elements, while
Example 3 will show only the first 300 elements.

Example 1 shows implicit indexing with the default start and default end
index. The bean with the smallest number of indexed properties restricts the
number of times the loop will repeat:
82 Linux for WebSphere and DB2 Servers

<table>
<repeat>
<tr><td><insert bean=serviceLocationsQuery

property=city></insert></tr></td>
<tr><td><insert bean=serviceLocationsQuery

property=address></insert></tr></td>
<tr><td><insert bean=serviceLocationsQuery

property=telephone></insert></tr></td>
</repeat>
</table>

Example 2 shows indexing, the starting index and ending index:

<table>
<repeat index=myIndex start=0 end=2147483647>
<tr><td><insert bean=serviceLocationsQuery

property=city(myIndex)></insert></tr></td>
<tr><td><insert bean=serviceLocationsQuery

property=address(myIndex)></insert></tr></td>
<tr><td><insert bean=serviceLocationsQuery

property=telephone(myIndex)></insert></tr></td>
</repeat>
</table>

Example 3 shows explicit indexing and ending index with an implicit starting
index. Although the index attribute is specified, the indexed property city can
still be implicitly indexed because the (i) is not required:

<table>
<repeat index=myIndex end=299>
<tr><td><insert bean=serviceLocationsQuery

property=city></insert></tr></td>
<tr><td><insert bean=serviceLocationsQuery

property=address(myIndex)></insert></tr></td>
<tr><td><insert bean=serviceLocationsQuery

property=telephone(myIndex)></insert></tr></td>
</repeat>
</table>

You can nest <REPEAT> blocks. Each block is separately indexed. This
capability is useful for interleaving properties on two beans, or properties that
have subproperties. In the example, two <REPEAT> blocks are nested to display
a list of songs on each compact disc in a user's shopping cart:

<repeat index=cdindex>
<h1><insert bean=shoppingCart property=cds.title></insert></h1>
<table>
<repeat>
Web programming model 83

<tr><td><insert bean=shoppingCart
property=cds(cdindex).playlist></insert>

</td></tr>
</table>
</repeat>

</repeat>

6.5.5 JavaServer Page API
Two interfaces support the JSP technology. These APIs provide a way to
separate business logic from a GUI presentation (for example, an HTML Web
page design). The interfaces that support JSP are:

• com.sun.server.http.HttpServiceRequest

This class implements the javax.servlet.http.HttpServletRequest interface
and a setAttribute() method to set attributes defined by name.

• com.sun.server.http.HttpServiceResponse

This class implements the javax.servlet.http.HttpServletResponse
interface and adds a callPage() method enabling servlets to call JSP files
and optionally pass a context.

6.5.5.1 callPage() method
Use the callPage() method to serve a JSP from within a servlet. The served
page (a JSP file) is returned as the response to the browser. The calling
servlet can also pass some context using the request object. You should code
the header of the served page to include a directive to tell the browser not to
cache the file.

The syntax of the callPage() method is:

public void callPage(String fileName, HttpServletRequest req) throws
ServletException, IOException

Where:

fileName is the name of the URL that identifies the file that will be used to
generate the output and present the content. If the file name begins with a
slash (/), the file location is assumed to be relative to the document root.
If the file name does not begin with a slash, the location is assumed to be
relative to the URL with which the current request was invoked.

The callPage() method does not support calling pages with the file
extension .html. If you need to invoke HTML pages using the callPage()

method, you must first rename the HTML files to have the file extension
.jsp.
84 Linux for WebSphere and DB2 Servers

req is the HttpServletRequest object of the servlet that invoked this
method. Most often, the content is passed as a Bean in the context of the
request object.

To use the callPage()method, you must cast the response object to a special
Sun object: com.sun.server.http.HttpServiceResponse.

Using the setAttribute() method to store an attribute in the request context,
the syntax is:

public void setAttribute(String key, Object o)

Where:

key - Is the name of the attribute to be stored

o - Is the context object stored with the key.

To use the setAttribute() method, you must cast the request object to a
special Sun object: com.sun.server.http.HttpServiceRequest. See the sample
PopulateBeanServlet for an example of the syntax.

6.5.6 Preventing Web page caching
To prevent Web browsers and proxy servers from caching dynamically
generated Web pages (meaning dynamic output that results from processing
JSP files, SHTML files, and servlets), use the following code to set headers in
the HTTP response:

<%
response.setHeader("Pragma", "No-cache");
response.setDateHeader("Expires", 0);
response.setHeader("Cache-Control", "no-cache");
%>

Setting the HTTP headers is a more effective method of controlling browser
caching than using the <META> tag equivalents. For example, <META
HTTP-EQUIV="Pragma" CONTENT="No-cache"> is the equivalent of the first HTTP
header setting. Setting the HTTP headers is the recommended method
because of one of the following reasons:

Some browsers do not treat the <META> tags in the same way as the equivalent
HTTP header settings.

On some browsers, the <META> tag equivalents do not work when the
callPage() method is used to load a JSP file that contains the <META> tags.
Web programming model 85

There may be instances when you want to permit a page to be cached, but
you do not want the proxy server to permit multiple users to have access to
the cached page. For example, suppose your servlet does not use session
tracking and it generates a Web page that contains user input. To maintain
that personalization, you would want to prevent other users from having
access to the cached page. To prevent the proxy server from sharing cached
pages, use the following code:

<%
response.setHeader("Cache-Control", "private");
%>

This header can be combined with the three recommended headers for
preventing caching.

6.5.6.1 PopulateBeanServlet.java sample
import java.io.*;
import java.beans.Beans;
import javax.servlet.*;
import javax.servlet.http.*;
import DataBean;
/**
* PopulateBeanServlet - This servlet creates an instance of a Bean
* (DataBean), sets several of its parameters, sets the Bean instance
* as an attribute in the request object, and invokes a JSP file to
* format and display the Bean data.
***/
public class PopulateBeanServlet extends HttpServlet
{

public void Service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException
{

DataBean dataBean;
// Create an instance of DataBean
try

{
dataBean = (DataBean)

Beans.instantiate(this.getClass().getClassLoader(), "DataBean");
}
catch (Exception ex)
{

throw new ServletException("Can't create BEAN of class DataBean: "
+ ex.getMessage());

}

// Set some Bean properties (content generation)
86 Linux for WebSphere and DB2 Servers

dataBean.setProp1("Value1");
dataBean.setProp2("Value2");
dataBean.setProp3("Value3");

// To send the Bean to a JSP file for content formatting and display
// 1) Set the Bean as an attribute in the current request object
((com.sun.server.http.HttpServiceRequest)

req).setAttribute("dataBean", dataBean);

// 2) Use callPage to invoke the JSP file and pass the current request
object

((com.sun.server.http.HttpServiceResponse)
res).callPage("/DisplayData.jsp", req);

}

} /* end of class PopulateBeanServlet */
Web programming model 87

88 Linux for WebSphere and DB2 Servers

Chapter 7. Servlet programming model

In this chapter we discuss the following topics:

• Issues with CGI scripts and Web server API extensions
• CGI scripts, Web server API extensions and servlets - life cycles
• Summmary of a servlet and its life cycle
• Environment variables in CGI versus servlets
• Servlet threading - reentrancy of servlets
• Servlet programming under a microscope
• Migrating from a CGI base to servlets
• Programming WebSphere’s servlet API extensions

7.1 Issues with CGI scripts and Web server API extension

Common Gateway Interface (CGI), has been traditionally exploited in two
main ways: CGI scripts and Web server API extention. CGI scripts are
interpreted scripts that reside in a /cgi-bin/ directory pointed to by the Web
server. Web server API extensions are implemented as a binary executable,
usually as a DLL or Shared Object module that gets loaded at Web server
startup time and is accessed as a Web server service and configured in the
Web server’s configuration files. Examples of API extensions include
Netscape NSAPI, IBM ICAPI, Apache API, and Microsoft ISAPI.

All CGI applications are in the broadest sense, complex to develop. This is
because there is a need for indepth technical knowledge on how to work with
parameter passing and in using specific scripting languages. In the case of
the API extensions, there are the problems of having to program and compile
a server extension module plug-in, using a nonportable language with a
different compiled binary for each supported operating system and each
supported Web server on each operating system platform. The skills needed
to do this are not common. The support quickly becomes a burden and a
limiting factor on how portable the solution actually is.

Most CGI Scripts are not portable. A CGI application written for a specific
platform will usually only be able to run in that platform environment. A
normal CGI Script is brought to life in a memory process that is activated by a
client browser request and is destroyed after the client has been served. This
causes high startup, memory, and CPU costs and also, multiple clients
cannot be served by that same single process when running.

Although API extension modules can be loaded as shared libraries, the
parameter passing is still by way of environment variables and there is still an
© Copyright IBM Corp. 1999 89

overhead in servicing each request. A programmer is fully responsible for
analyzing and parsing the variables’ data stream passed to the API extension
module. These modules generally run as part of the Web server process and
if badly written and buggy, can take the entire Web server down.

On the other hand, servlets offer all the advantages of Java programs; they
are portable and isolated applications and they are comparatively easy to
develop. The variables (both system and parameters) are already parsed and
handed to the servlet as a tag/data list (see 7.3, “Environment variables in
CGI versus Servlets” on page 95) for easy access and processing. Servlets
also allow you to generate dynamic portions of HTML pages embedded in
static HTML pages using the servlet tag. Servlets provide easy access to a
wide range of middleware JavaBeans designed to access all manner of data
sources. The range of available middleware JavaBeans is growing constantly
and includes interfaces and support for most leading database products.

A further advantage of servlets over CGI script processes is that a servlet is
activated by the first client that sends it a request and remains active and
ready to service other requests. Servlets can also be set to load and initialize
at Server startup time before the first request has been received. There is
also the feature called remote servlets, which is when a servlet is requested
at one server and this server downloads and activates the servlet dynamically
from a remote server, as a secure or nonsecure file.

Once loaded and activated, a servlet continues waiting in the background for
further requests and each request generates a new service thread, not an
entire process. Because the service process of a servlet is by nature
reentrant, multiple clients may be served simultaneously inside the same
servlet and typically the servlet process dies only when the Web server is
shut down.

Servlets are also conceptually and functionally very similar to Fast CGI.
Below is a link to a reference paper that covers the CGI API:

CGI Scripts: http://hoohoo.ncsa.uiuc.edu/cgi/interface.html

7.2 CGI scripts, API extensions and servlets - life cycles

The following sections look at CGI scripts, Web server API extensions and
servlets in terms of how they are developed and their life cycles.
90 Linux for WebSphere and DB2 Servers

7.2.1 CGI scripts - life cycle
CGI scripts are written as interpretive code in languages such as perl, tcl,
rexx or even vanilla UNIX shell scripts. When the CGI request arrives at the
Web server, it forks off a new process to run the script and sets up the
environment variables for this process. Included in the variables is any form
input as well as information about the requestor such as the browser or its
level. Any response from the CGI script is processed by the Web server
according to its content. Typically the response will be an HTML stream that
will then be sent back to the client and appear in the client’s browser window.

The sequence of events for a CGI script are as follows:

1. A client at a browser clicks a link that contains the /bin-cgi/ phrase
(positioned immediately after the host name portion of the URL).

2. The Web server intercepts the request and looks in its CGI-BIN directory
for the script named in the URL portion following the /cgi-bin/ keyword.

3. A process is forked off to run the interpreter that will process the script.

4. The process is passed a set of environment variables that include both
system information and any parameters that were attached to the name of
the cgi-bin script command name.

5. The script is interpreted (runs) and in the process of executing, usually will
generate an HTML stream mixed with data to return to the client. The
HTML stream is constructed on the fly per the design and function of the
script.

6. The process terminates and resources are freed.

7. The client sees the resulting HTML stream as yet another Web page or
item on a Web page. Page counters are a typical small CGI script item.

7.2.2 API extension - life cycle
API extensions are where the CGI functionallity is built into a binary module
that is then added as an extension of a particular Web server on a particular
operating system. Being an extension means it can be loaded into memory
(on Windows - as a Dynamic Load Library (DLL); on Linux as an SO Shared
Object) module, but because it is an extension of the Web server each
request runs in the server’s address space. The parameter passing technique
available is by way of environment variables and the onus is on the API
extension programmer to process and parse system variables and to further
parse the parameters sent by a client as part of GET/POST requests.
Servlet programming model 91

A software company offering a package that uses the API extensions
interface has to deal with the logistics of distributing multiple binaries for all
the Web servers and operating system combinations they want to support.

With WebSphere and Java, a servlet is the exact same code for all the
supported Web servers and operating system platforms. IBM as a middleware
provider carries the overhead of integrating WebSphere with the many
combinations of Web server and operating system. This leaves customers
and Web developers to focus on running solutions and writing business logic.

The sequence of events for an API extension call are as follows:

1. A client at a browser clicks a link that contains a special trigger phrase; an
example is /abtwsi/ (IBM’s Smalltalk WebConnection API interface).

2. The Web server intercepts the request when it sees the trigger phrase that
like the /cgi-bin/ phrase is the first phrase after the host name in a URL. In
API extensions the data following the trigger phrase is passed to the API
extension service module which interprets it based on what the extension
is designed to perform. The process is passed to the environment
variables (both system info and GET/POST parameters).

3. Control is passed to the entry point in the API extension module.

4. The extension module executes according to its design and will normally
return an HTML stream to the Web server.

5. The process terminates and resources are freed.

6. The client gets the resulting HTML stream and data.

7.2.3 Summary of a servlet
Similar to the way applets run on a browser and extend the browser's
capabilities, servlets run on a Java-enabled Web server and extend the
server's capabilities.

Servlets are Java programs that use the Java servlet application
programming interface (API) and the associated classes and methods. In
addition to the Java servlet API, servlets can use Java class packages that
extend and add to the API.

Servlets extend server capabilities by creating a framework for providing
request and response services over the Web. When a client sends a request
to the server, the server can send the request information to a servlet and
have the servlet construct the response that the server sends back to the
client.
92 Linux for WebSphere and DB2 Servers

A servlet can be loaded automatically when the Web server is started, or it
can be loaded the first time a client requests its services. After loading, a
servlet continues to run, waiting for additional client requests.

Servlets perform a wide range of functions. For example, a servlet can:

• Create and return an entire HTML Web page containing dynamic content
based on the nature of the client request.

• Create a portion of an HTML Web page (an HTML fragment) that can be
embedded in an existing HTML page.

• Communicate with other server resources, including databases and
Java-based applications.

• Handle connections with multiple clients, accepting input from and
broadcasting results to the multiple clients. A servlet can be a multi-player
game server, for example.

• Open a new connection from the server to an applet on the browser and
keep the connection open, allowing many data transfers on the single
connection. The applet can also initiate a connection between the client
browser and the server, allowing the client and server to easily and
efficiently carry on a conversation. The communication can be through a
custom protocol or through a standard such as IIOP.

• Filter data by MIME type for special processing, such as image conversion
and server-side includes (SSI).

• Provide customized processing to any of the server's standard routines.
For example, a servlet can modify how a user is authenticated.

7.2.4 Servlet life cycle
The life cycle of a servlet begins when it is loaded into Web server memory
and ends when the servlet is terminated or reloaded.

The diagram represented in the following figure is a graphical representation
of the servlet life cycle.
Servlet programming model 93

Figure 31. Servlet life cycle

The servlet life cycle can be summarized in the following way:

• The servlet is loaded. This operation is typically performed dynamically,
that is, when the first client has access to the servlet 1. However, servers
will usually provide an administrative option to force loading and initializing
particular servlets when the server starts up.

• The server creates an instance to the servlet 2.

• The server calls the servlet init() method 3.

• A client request arrives at the server 1. A client request is already at the
server if the client request initiated the servlet load.

• The server creates a request object 4.

• The server creates a response object 5.

Request

1 13

Servlet Object

init()

service()

S E R V E R

Resources

2

3

4

5

6

7

8

9 10

11

12

Client

Request

Response
94 Linux for WebSphere and DB2 Servers

• The server invokes the servlet service() method 6, passing the request 7
and response 8 objects as parameters.

• The service() method gets information about the request object and
processes the request accessing the other resources 9 and getting the
necessary information 10.

• The service() method uses methods of the response object to pass the
response 11 back to the server 12 and then to the client 13. The service()
method may invoke other methods to process the request, such as
doGet() or doPost() or new methods that the servlet developer wrote.

• For additional client requests, the server creates new request and
response objects, again invokes the service() method of the servlet and
passes those two objects as parameters to it. Therefore, this loop is
repeated, but without the need to recall the init() method. The servlet, in
general, is initialized only once.

• When the server no longer needs the servlets (typically when the server is
shut down), the server invokes the servlet destroy() method.

7.3 Environment variables in CGI versus Servlets

In a CGI script, the user is is able to issue commands to examine the
environment variables passed over as part of the process that was forked to
service the CGI request. These variables are documented as part of the
CGI-BIN specification put out by the W3 Consortium. A published list of these
variables includes:

DOCUMENT_NAME The complete local directory path of the current
document.

DOCUMENT_URI The local path of the current document referenced to
the base directory of the Web space.

QUERY_STRING_
UNESCAPED The unescaped query string sent by the client

browser, all shell-special characters escaped with \.

DATE_LOCAL The current local date and time.

DATE_GMT The current Greenwich Mean date and time.

LAST_MODIFIED The date and time of the last modification of the
current document.

REMOTE_ADDR The IP address of the remote client browser.

QUERY_STRING The raw query string sent from the remote browser.
Servlet programming model 95

SERVER_SOFTWARE The name of the HTTP server software.

SERVER_NAME The local computer name of the HTTP server.

GATEWAY_INTERFACE The name/version of the Common Gateway
Interface served on this HTTP server.

SERVER_PROTOCOL The name/version of HTTP served on this HTTP
server.

SERVER_PORT The IP port om which the HTTP server is answering.

REQUEST_METHOD The method by which the current document was
requested.

PATH_INFO The extra path info that is sent. This information is
regarded as virtual (the path is relative to the base
directory of the HTTP server).

PATH_TRANSLATED The PATH_INFO variable translated from virtual to
local (physical) disk location.

SCRIPT_NAME The virtual path of the script being executed.

REMOTE_HOST The host name of the remote client.

AUTH_TYPE The authentication method used to validate the
remote client.

REMOTE_USER The user name used to validate authentication from
the remote client. Great for use in password
protected sites.

REMOTE_IDENT The remote user name if supporting RFC 931
identification.

CONTENT_TYPE The content type of the attached information in the
case of a POST or PUT.

CONTENT_LENGTH The length of the attached information in the case of
a POST or PUT.

HTTP_ACCEPT A comma separated list of mime types that are
accepted by the remote browser.

HTTP_USER_AGENT The name of the remote client browser software.

REFERER The URL of the HTML document that referred the
remote client to this document.

FROM The name (most likely the mail address) of the
remote client user. Unlikely to be set.
96 Linux for WebSphere and DB2 Servers

FORWARDED The name of the proxy server through which this
document is being processed.

ACCEPT_LANGUAGE The human languages that are acceptable to the
remote client.

HTTP_COOKIE The cookie sent by the remote client.

The CGI programmer has to write or obtain a set of parsing routines that will
extract needed environment variables and in the case of the variable called
QUERY_STRING have to further parse the fields within.

All these same variables are passed to a servlet but not using environment
variables. They are passed as lists of tag/data pairs that a servlet
programmer can request by name from the servlet’s RequestObject using a
simple method call. This saves the programmer a significant effort in dealing
with these variables and the QUERY_STRING parameter data.

7.4 Servlet threading - reentrancy of servlets

Servlets servicing HTTP client requests are inherently reentran, having been
designed to serve multiple clients concurrently. A servlet programmer can
still, using a poor programming technique, corrupt this reentrancy by
interacting with a resource such as a data field by altering it while other
instances of the same servlet or other servlets can do the same. Typically in
such a scenario two instances of the same servlet could be trying to alter the
same data at the same time.

If you have a requirement to run only a single instance of a servlet service
because it accesses a shared resource that you want to protect, you can
program your servlet or call a servlet that handles only one client request at a
time. (An alternate technique is to synchronize access to the resource using
the synchronize of the threads API.)

To get a servlet to handle only one client service request at a time, have your
servlet implement the SingleThreadModel interface in addition to extending
the HttpServlet class.

Implementing the SingleThreadModel interface does not involve writing any
extra methods. You merely declare that the servlet implements the interface,
and the server makes sure that your servlet runs only one service method at
a time.

For example, a StockUpdate servlet that alters the available quantity of a
stock item, should be held in storage in a way that forces the servlet to control
Servlet programming model 97

access to the quantity field. By implementing the SingleThreadModel you will
be able to have requests change this field filtered through just the one
instance of the servlet. As mentioned earlier, an alternate method is to use
the synchronization of the threads API to do the same. So the servlet can
either synchronize access to that resource, or it can implement the
SingleThreadModel interface. If the servlet implements the interface, the only
change in the code is the line below shown in bold:

A servlet using the above can thus be used to control access to any process
that should only be done by one active task at any given point in time.

Examples of activities that this could cover include:

• Updating warehouse stock inventory levels
• Altering product price and availability information
• Obtaining an order reference number from a control file

7.5 Programming WebSphere’s servlet API extensions

WebSphere comes with a number of very useful extensions to the servlet
API. These are designed to further ease the work in programming servlets for
specific uses and to help minimize the highoverhead processing associated
with such tasks as opening and closing connections to a relational database.

Following this page is code showing how two of the more important APIs are
actually used. Before covering them, though, we will point you to the following
excellent resource material for getting yourself started on developing
e-commerce applications.

WebSphere includes several very detailed examples showing ways you can
use these API extensions. If you wish to research the topic in depth and you
have installed WebSphere and have it running. Access the following URL:

public class ReceiptServlet extends HttpServlet
implements SingleThreadModel {

public void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
...

}
...

}

98 Linux for WebSphere and DB2 Servers

http://<your_server_name>/IBMWebAS/samples/index.html

Figure 32 on page 100 shows the samples applications page. This page has
links explaining the steps needed to set up WebSphere and to load a DB2
database for the applications to run.

Additional information, above and beyond that in the above samples page,
can be found by invoking:

http://<your_websphere_server>:9527/

Once Admin has started, select the WebSphere Documentation Center,
then select Resources, then select Samples. The source code for a number
of samples is available. Also there are detailed descriptions for using the APIs
and functions.

Both the above resources are highly recommended as starting points.
Servlet programming model 99

Figure 32. The WebSphere sample servlets page
100 Linux for WebSphere and DB2 Servers

7.5.1 DB connection pooling
WebSphere comes with a database connection pooling facility that can be
used by programmers to manage connections to a database. This is an API
that contains methods establishing a pool of open connections to a given
database and for requesting a connection from the managed pool plus for
returning them to the pool. The pool of connections for a given database is
managed through the WebSphere admin facility.

The reason that WebSphere offers connection pooling is that there is a high
overhead to opening and closing a connection to the database. So by adding
a connection manager to WebSphere, the programmer only has to call the
method that returns an open connection, then when the servlet is finished the
still open connection is returned to the connection pool.

Figure 33. Declarations used with IBMConnMgr class

Figure 33 shows the code used in a servlet that will set up an IBMConnMgr
object to manage a pool of threads. The declarations are all static because
these are class variables shared by all instances of this servlet. The variables
are only used in the init() section of the servlet, but the service methods are
able to make requests to the connection manager object that gets instantiated
in the init() code.
Servlet programming model 101

Figure 34 shows the code in init() that creates the connection pool which can
only be done if the servlet already knows which database it is going to use. A
servlet that does not know this information cannot really take advantage of
the connection pool manager because a pool will normally only be of use if
established during the init() part of a servlet’s life.

Figure 34. The init() code used to create the connection pool
102 Linux for WebSphere and DB2 Servers

Figure 35. Hhow the servlet service (doGet() requests a connection from the pool

Figure 35 shows the service cycle of the servlet where the doGet() method is
called. A connection is requested from the connection pool, and an SQL
Servlet programming model 103

statement is opened using the connection. A result set gets returned and
once the data is processed the service is completed and the connection
returns by default to the connection pool. The connection manager does not
expect the servlet to notify it that it has finished with the connection. This is
deduced by the fact that the instance of the servlet has ended.

Figure 36 shows the code in the finally method that gets invoked when either
the servlet is unloaded, or replaced, or WebSphere is about to terminate.

Figure 36. The code that terminates the connection pool
104 Linux for WebSphere and DB2 Servers

7.5.2 Session management
Figure 37 is sample code from WebSphere online documentation showing a
simple session tracking example:

Figure 37. Sample session code

The example picks up the counter cookie for a client session and increments
it. What information you want to keep and how you use it are very much up to
how you want your application to work.

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
public
class SessionSample extends HttpServlet {
public void doGet (HttpServletRequest request, HttpServletResponse
response)

throws ServletException, IOException
{
// Step 1: Get the Session object
boolean create = true;
HttpSession session = request.getSession(create);

// Step 2: Get the session data value
Integer ival = (Integer)
session.getValue ("sessiontest.counter");

if (ival == null) ival = new Integer (1);
else ival = new Integer (ival.intValue () + 1);
session.putValue ("sessiontest.counter", ival);

// Step 3: Output the page
response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<html>");
out.println("<head><title>Session Tracking

Test</title></head>");
out.println("<body>");
out.println("<h1>Session Tracking Test</h1>");
out.println ("You have hit this page " + ival + " times" +

"
");
out.println ("Your " + request.getHeader("Cookie"));
out.println("</body></html>");

}
}

Servlet programming model 105

There are times when it is useful to save session information in the servlet
rather than in cookies on the client’s computer. Some people are almost
paranoid about cookies being placed on their computers. One approach to
keeping session information in the servlet is by declaring a class variable
Vector (as static) in the servlet class declarations area, and also declaring a
class instance vairable Hashtable (not static), both set to null.

Example code follows (this is only sample code and does not include all the
normal includes and other instructions):

Then in the init() code area, instantiate the Vector by creating an instance of
one. Doing the above makes it a shared resource among all the instances of
this particular servlet.

If is important to remember that while it is okay for each instance of a servlet
to read the data from a shared resource such as the Vector just declared, it is
critical to use synchronization when adding objects (such as the session

import java.util.*; // includes Vector, Hashtable, Date etc:

/*********************************
*
* SampleSessionSavingServlet
* Doug Marker - Aug 1999
*/.

import java.util.* // include Vectors & Hashtables in code

public class SampleSessionSavingServlet {

private static Vector savedSessionsStack = null;

private Hashtable savedSessionValues = null;
private HttpSession session = null;

} // end of SampleSessionSavingServlet

public void init(ServletConfig swervletConfig) {
super.init(servletConfig);

savedSessionStack = new Vector; // now create the Vector

<add your code to make any DB connection or create a pool>

} // end of init().
106 Linux for WebSphere and DB2 Servers

information in the Hashtable) to a shared resource like the Vector. This is to
avoid it becoming corrupted. See the following code segments.

The above routines are coded as separate methods. This can be done this
way as the instance variables are coded in the class definition and thus can
be referred to across methods. If they were not declared that way, each
routine would have to pass the variables in its method signature. In fact the
routine below does exactly this because the variables sessionId,
aPassedObj1 and aPassedObj2 were declared in the doGet() method and
thus have to be passed in the method call signature:

public void doGet(HttpServletRequest req,
HttpServletResponse res)

throws ServletException IOException {

String sessionId = locateSessionObject(req);

} // end of doGet().

/********************
*
*/

public String locateSessionId(HttpServletRequest req) {

session = req.getSession(true); // instance variable
return session.getId();

}

private synchronized void addEntryToSavedSessionStack(String
sessionId, Object1 aPassedObj1, Object2 aPassedObj2)

{
savedSessionData = new Hashtable(); // create Hashtabble.
savedSessionData.put("id", sessionId),
savedSessionData.put("obj1", aPassedObj1);
savedSessionData.put("obj2", aPassedObj2);
savedSessionData.put("date", new java.util.Date());
savedSessionValues.addElement(savedSessionData);

}

Servlet programming model 107

7.6 Servlet programmming under a microscope

The following section examines in more detail the various classes available
to write servlets.

7.6.1 Using GenericServlet class versus HttpServlet class
One point that needs understanding early in your learning cycle is the
difference between GenericServlet class and HttpServlet class.

Put very simply, GenericServlet class allows a programmer to write servlets
that do not take HTML input or send HTML output. There are functions that a
programmer may want to write in a servlet that access other forms of data or
get passed objects to be worked on. The servlet programmer only has to
write a service() method that gets invoked when a GenericServlet is called.

HTMLServlet is an extension of GenericServlet and replaces the service()
method with the doGet() and doPut() methods. The HTMLServlet adds
method calls to assist the servlet programmer in accessing HTML input and in
sending HTML output. So it is clear that one type of servlet is for non-HTML
related processing while the other is specialized for HTML processing.

7.6.2 GET/POST processing in servlets
With a servlet, the same servlet can handle both GET and POST methods
when receiving parameters from a client's browser request, but if you want to
handle both GET and POST methods by submitting a form and using normal
CGI scripts, you would need two different scripts or two different code
branches with some conditional logic. With servlets you can switch between
GET and POST methods while requesting pages without altering any code in
the servlet that handles and responds to the request.

Figure 38 and Figure 39 show how a servlet can discover information about
the server, the client environment, and all the data sent by the client. They
also describe loops of a typical structure in servlets.
108 Linux for WebSphere and DB2 Servers

Figure 38. Sample form servlet (part 1 of 2)

/**
*
* FormInfo Servlet
*
*/
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
&rbl.
public class FormInfo extends HttpServlet
{

public void service(HttpServletRequest request, HttpServletResponse r
throws ServletException, IOException

{
ServletOutputStream out = response.getOutputStream();
response.setContentType("text/html");

out.println("<html><head><title>Form Information</title></head>");
out.println("<body><h1>Form Information</h1>");
out.println("HTML Method: " + request.getMethod() + "
");
out.println("URI: " + request.getRequestURI() + "
");
out.println("Protocol: " + request.getProtocol() + "
");
out.println("Servlet Path: " + request.getServletPath() + "
");
out.println("Path Info: " + request.getPathInfo() + "
");
out.println("Path Translated: "+request.getPathTranslated()+"
");
out.println("Query String: " + request.getQueryString() + "
");
out.println("Content Length: "+request.getContentLength()+"
");
out.println("Content Type: " + request.getContentType() + "
");
out.println("Server name: " + request.getServerName() + "
");
out.println("Server port: " + request.getServerPort() + "
");
out.println("Remote User: " + request.getRemoteUser() + "
");
out.println("Remote Address: "+request.getRemoteAddr()+"
");
out.println("Remote Host: " + request.getRemoteHost() + "
");
out.println("Authentication Scheme: "+request.getAuthType()+"
");
out.println("<p>");

Enumeration names = request.getHeaderNames();
while (names.hasMoreElements())
{

String header = (String) names.nextElement();
out.println(header + ": " + request.getHeader(header) + "
")

}
out.println("<p>");
Servlet programming model 109

Figure 39. Sample form servlet (part 2 of 2)

This example demonstrates how you can handle very complex data in a
servlet. This servlet parses an arbitrary form request and echoes the data
back in an HTML page, so it can be very useful for testing forms. In addition,
it uses several HttpServletRequest methods to get information:

• getMethod() returns the method used to submit the request.

• getRequestURI() returns the URI that was requested.

• getProtocol() returns the protocol and the version of the request.

• getServletPath() returns the part of the request URI that refers to the
servlet being invoked.

• getPathInfo() returns optional extra path information following the servlet
path, but immediately preceding the query string. It returns the value null if
not specified.

• getPathTranslated() returns extra path information translated into a real
path and returns null if no extra path information was specified.

• getQueryString() returns the query string part of the servlet URI or null if
none.

• getContentLength() returns the size of the request entity data or -1 if not
known.

names = request.getParameterNames();
while (names.hasMoreElements())
{

String key, value;
key = (String)names.nextElement();
value = request.getParameter(key);
out.println("KEY: " + key + " VALUE: " + value + "
");

}
out.println("<p>");
while (names.hasMoreElements())
{

String key = (String)names.nextElement();
String [] values = (String []) request.getParameterValues(key);
if (values != null)
{

out.println("KEY: " + key + "VALUES: ");
for (int i = 0; i < values.length; i++)

out.println(values[i] + " ");
out.println("
");

}
}

out.close();
}

}

110 Linux for WebSphere and DB2 Servers

• getContentType() returns the Internet Media Type of the request entity
data or null if not known.

• getServerName() returns the host name of the server that received the
request.

• getServerPort() returns the port number of the port on which the request
was received.

• getRemoteUser() returns the name of the user making the request or null
if not known.

• getRemoteAddr() returns the IP address of the agent that sent the
request.

• getRemoteHost() returns the fully qualified host name of the agent that
sent the request.

• getAuthType() returns the authentication scheme of the request or null if
not known.

• getHeaderNames() returns an enumeration of strings representing the
header names for this request. By passing each name to the getHeader()
method, you can retrieve the value of the corresponding header or null if
not known.

• getParameterNames() returns the parameter names for this request as an
enumeration of string or an empty enumeration if there are no parameters
or the input stream is empty. By passing each name to the getParameter()
method, you can retrieve the lone value of the specified parameter or null
if the parameter does not exist. For example, it is the getParameter()
method that retrieves the value of the age parameter. If the parameter has
or could have more values, the getParameterValues() method returns the
values of the specified parameter or null if the named parameter does not
exist. For example, it is the getParameterValues() method that retrieves
the values of the VisitedCity parameter.

There is one more piece of code not yet explained. This piece of code was
not necessary in the example in Figure 38 on page 109 because we knew all
of the names of the parameters we were expecting to send. The example we
describe now is more general, because it can be used to test forms that have
names of parameters that we don't know in advance. That is the reason why
we parse all the parameters with an enumeration:

Enumeration names = request.getParameterNames();

We can now use the hasMoreElements() method to test for the end of the
parameter list:
Servlet programming model 111

while (names.hasMoreElements())

{

...

}

Inside the while cycle, we can retrieve the next parameter name or key from
the nextElement() method of enumeration:

String key, value;

key = (String)names.nextElement();

Given the key string, we can look up the parameter value from the response
argument to the servlet with the getParameter() method:

value = request.getParameter(key);

Now we can do whatever processing or output we like with key and value:

out.println("KEY: " + key + " VALUE: " + value + "
");

We see frequent loops of this structure in servlets:

Figure 40. Loops of a typical structure in servlets

7.6.3 The init(), service(), and destroy() methods
Notice that both the classes GenericServlet and HttpServlet are abstract, that
is, they contain methods that have not been completed. It is up to the
subclasses of the abstract class to override at least one method. You can
recognize a typical Java application because of the presence of the main()
method. It is automatically executed when the application is loaded. Java
applets are event-driven. This is done with a series of methods created by
inheritance from the applet classes:

• init()

while (names.hasMoreElements())
{

String key, value;
key = (String)names.nextElement();
value = request.getParameter(key);
out.println("KEY: " + key + " VALUE: " + value + "
");

}

112 Linux for WebSphere and DB2 Servers

• start()
• stop()
• destroy()
• paint()
• repaint()

Servlets look like ordinary Java programs. How do you recognize them? First
of all they must implement the servlet interface, usually by extending either
the GenericServlet class or the HttpServlet class. Both the GenericServlet
and the HttpServlet classes contain three methods, which they take by
inheritance from the servlet interface:

1. init()
2. service()
3. destroy()

These methods are used by the servlet to communicate with the server. As
has been said, these three methods are called life cycle methods. You will
work with these three methods in a slightly different way, depending on
whether you are extending the GenericServlet class or the HttpServlet class.

However, the simplest possible servlet defines the single service() life cycle
method. In other words, the service() method is required and the others are
optional.

Figure 41. The simplest possible servlet contains a single life cycle method, service()

import java.io.*
import javax.servlet.*;

public class SimplestServlet extends GenericServlet
{

public void service(ServletRequest request, ServletResponse response)
throws ServletException, IOException

{
PrintStream out = new PrintStream(res.getOutputStream());
out.println("Hello World!");

}

public String getServletInfo()
{

return "This servlet defines the single service() life cycle method";
}

}

Servlet programming model 113

It would be helpful to have a general description of each of them before
moving on to the next section. Notice that this servlet also presents the
getServletInfo() method for the servlet interface. This method is not really
required, which means that this example could be made even simpler. We just
want to show the use of this method in order to return general information
about a servlet, for example, its author.

The init() and the destroy() methods have the same properties for the
GenericServlet class or the HttpServlet class. Descriptions of these methods
follow:

• The init() method is run only once when the server loads the servlet and
the servlet is started. It is guaranteed to finish before any service()
requests are accepted. The servlet can be activated when the server
starts or when the first client accesses the servlet. The biggest advantage
is that the init() method is called only once, without considering how many
clients access the servlet. The default init() method logs the servlet
initialization and it is possible to configure it in order to save other
information.

The default init() method can usually be accepted as it is, without the need
to override it, because it is not abstract. Servlet developers may, if they
want, provide their own implementation of this method, overriding it and
creating a custom init(). A custom init() is typically used to perform setup
of servlet-wide resources only once, rather than once per request. For
example, you might want to write a custom init() to load GIF images one
time only, where the servlet returns the images multiple times in response
to multiple client requests to the servlet. Further examples may be
initializing sessions with other network services or getting access to their
persistent data (stored in a database or in a file).

When you write your own code overriding

public void init(ServletConfig config) throws ServletException

you should always invoke super.init(config). In fact, the init() method is
called automatically, by default, by the network service each time it loads
the servlet. The most important function the init() method provides when it is
called is to return the config object for use to the servlet. If you override it
without calling the super.init() method, this function will no longer be
provided and the config object will no longer be initialized by the server.

Note
114 Linux for WebSphere and DB2 Servers

• The destroy() method is run only once when the server stops the servlet
and unloads it. The servlet-log file gives information about all the
initialized and destroyed methods and this is a way to see if, for example, a
servlet is unloaded. Moreover, the servlet-log file offers a good way to
debug.

Usually, the servlets are unloaded when the server is shut down. The
default destroy() method also can be accepted as is, without the need to
override it, because it is not abstract like the init() method. Servlet writers
may, if they wish, override the destroy call, providing their own custom
destroy() method. A custom destroy() method is often used in the
management of servlet-wide resources. For example, the server might
accumulate data when it is running and you might want to save this data to
a file when the servlet is stopped.

The service() method is the heart of the servlet. In fact, as we said, the
simplest possible servlet defines only the service() method. Unlike the init()
and destroy() methods, it is called for each client request, and not only one
time in the life cycle of the servlet. Moreover, it must be handled differently
when it is based on the GenericServlet class or HttpServlet class.

If the servlet is based on the GenericServlet class, the service method is
abstract, so you must override it. The service() method obtains information
about the client request, prepares the response, and returns this response to
the client. You should also consider that multiple clients might have access to
the service() method at the same time, so you also have to include threads
and synchronized code.

If the servlet is based on the HttpServlet class, the service method is not
abstract. Therefore, you can accept it if you are supporting the HTTP 1.0
protocol. The service() method determines whether the information entered
onto the form on the client's browser is provided by GET or POST. If the
answer is GET, the service() method calls the doGet() method of the
HttpServlet class. If the answer is POST, the service() method calls the
doPost() method of the HttpServlet class. It is up to the servlet developer to
override the doGet() or doPost() methods in order to accept the client's
request and give a response back to it, as appropriate. If you are supporting
the HTTP 1.1 protocol, then you will probably override the service() method to
support HTML 1.1 extensions (OPTIONS, PUT, DELETE, and TRACE).
Calling super.service() from within the overridden service method provides
the default handling on the other methods (such as GET and POST).
Servlet programming model 115

7.6.4 Parameters passed by the server
The service() method, as we said, is the heart of a servlet. It is through the
service() method that the server and servlet can exchange data. In fact, when
the server invokes the servlet service() method, it also passes two objects as
parameters.

• If the servlet is based on the GenericServlet class, the two objects are
instances of:

• ServletRequest
• ServletResponse

• If the servlet is based on the HttpServlet class, the two objects are
instances of:

• HttpServletRequest
• HttpServletResponse

These objects, let us call them request and response for convenience,
encapsulate the data sent by the client, providing access to parameters and
allowing the servlets to report status including errors if they occurred. You can
decide to write to System.out and System.err using the println() method and
you can decide to write in the servlet-log file using the log() method.

When writing your servlets, you can write your own code overriding the
following servlet class methods:

• init()

• service()

• destroy()

• getServletInfo()

• doGet()

• doPost()

All other Java servlet API methods are implemented by the WebSphere for
processing. You should make sure that you do not override any other Java
servlet API methods or you will be overriding the server's code.

In addition you should never call the java.lang.System.exit() method, because it
terminates the JVM currently running and servlets will no longer run until your
Java-enabled Web server is restarted.

Note
116 Linux for WebSphere and DB2 Servers

The server creates an instance for the request and response objects and
passes them to the servlet. Both these objects are used by the server to
exchange data with the servlet.

The servlet invokes methods from the request object in order to discover
information about the client environment, the server environment, and all the
information provided by the client; for example, all the data entered on a form
on the client's browser and set by the GET and POST methods. The specific
methods of the request object that the servlet uses to retrieve information
from the client are:

• getParameterNames()
• getParameter()
• getParameterValues()

The servlet invokes methods for the response object to send the response
that it has prepared, back to the client. The primary method of the response
object that the servlet uses to send the response back to the client is the
getOutputStream() method. This method returns a ServletOutputStream
object and you may use the print() and println() methods of this object for
writing the servlet response back to the client.

The input stream that the servlet gets using the getInputStream() method and
the output stream that the servlet gets using the getOutputStream() method
may be used with data in whatever format is appropriate. For example, HTML
and several image formats may be valid data formats.

7.7 Migrating from a CGI base to servlets

There are many reasons why people want to move off CGI scripts and
Fast-CGI applications. These boil down to portability, scalability, ease of
support, and skill.

While there is always likely to be a place for CGI scripts, they are not likely to
be the basis for any serious scalable e-commerce applications, even though
API extensions do scale acceptably.

7.7.1 Migration - decisions criteria
The decision-making issues to consider in migrating from CGI to servlets,
include:

1. How important is it to keep improving your CGI functions?

2. Migrating a specific CGI function:
Servlet programming model 117

• How many operating system platforms do you have to or want to
support?

• How many different Web servers do you have to or want to support?

• Do you care about being locked into minimal Server/OS platforms?

3. Are your company CGI skills concentrated in more than one or two
people?

4. How scalable is your existing CGI application?

5. Is the cost of scaling your existing CGI proving a burden?

6. Is the ability to balance client request loads important?

7. Is robust OOT important to your future software direction?

7.7.2 Migration - an approach
In order to migrate CGI applications to servlets, the existing CGI funtionality
needs to be documented and then rewritten in Java using the Java servlet
API. To do this successfully means reviewing the current Java servlet API for
the services it offers (allowing that the API is still expanding), then mapping
the old CGI functions to the available Java servlet services. The next step is
coding your servlets and testing them.

One of the best tools available for developing your Java servlets is IBM’s
VisualAge for Java. The new Version 3.0 Professional edition now includes
both DB2 access JavaBean generation facilities and servlet generation and
testing facilities. These were previously only available in the Enterprise
Edition of VisualAge for Java.
118 Linux for WebSphere and DB2 Servers

Part 3. WebSphere and design patterns for e-commerce

In this part we discuss WebSphere Application Server technology and servlet
design patterns for e-commerce.
© Copyright IBM Corp. 1999 119

120 Linux for WebSphere and DB2 Servers

Chapter 8. WebSphere Application Server technology

In this chapter we illustrate servlet security through administering users,
groups, access control list, and resources under the WebSphere Application
Server administration. Then, we discuss extending the servlet’s functionality
using Enterprise JavaBean (EJB) and Extended Markup Language
technology.

8.1 WebSphere Application Server security

In the following we will give a comprehensive treatment of IBM WebSphere
Application Server security.

IBM WebSphere Application Server consists of a Java-based servlet engine
that is independent on both the Web server on which it is installed and the
underlying operating system. This way the goal, write once, run everywhere
becomes available also for servlet development.

In addition to a servlet engine and plug-ins, WebSphere Application Server
provides the following components:

• Implementations of the JavaSoft Java servlet API, plus extensions of and
additions to the API.

• Sample applications that demonstrate how to use the basic classes and
the extensions.

• The application server manager, a graphical user interface (GUI) that
makes it easy to set options for loading local and remote servlets, sets
initialization parameters, specifies servlet aliases, creates servlet chains
and filters, monitors resources used by the application server, monitor
loaded servlets and active servlet sessions, logs servlet messages, and
performs other servlet management tasks. This feature will be used
several times in this chapter.

• A connection management feature that caches and reuses connections to
your Java Database Connectivity (JDBC)-compliant databases. When a
servlet needs database connections, it can go to the pool of available
connections. This eliminates the overhead required to open a new
connection each time.

• Additional Java classes, coded to the JavaBeans specifications, allow
programmers to access JDBC-compliant databases. These data access
beans provide enhanced function while hiding the complexity of dealing
WebSphere Application Server technology 121

with relational databases. They can be used in a visual manner in an
integrated development environment.

• Support for a new technology for dynamic page content called JavaServer
Pages (JSP). JSP files can include any combination of HTML tags,
<SERVLET> tags, <INSERT> tags, <BEAN> tags and NCSA tags (special tags
that were the first method of implementing the server-side includes).

• CORBA Support: An Object Request Broker (ORB) and a set of services
that are compliant with the Common Object Request Broker Architecture
(CORBA).

To see all the steps we followed to install and configure WebSphere
Application Server correctly, refer to WebSphere Application Server
installation and configuration in 5.12, “WebSphere Application Server -
installation and configuration” on page 51.

8.1.1 WebSphere Application Server security management
In this section, we consider the security features that WebSphere Application
Server has to offer.

Basically, from a security point of view, WebSphere Application Server
permits the administrator to restrict access to some or all of the resources
that have been installed on the Web server and that have been registered in
WebSphere Application Server. Access can be allowed to some of the users
based on certificates or passwords. The administrator can create users and
groups within realms, and add users to one or more groups. Positive
permissions (permit) can be set to users and groups, in the sense that, with
the permission model implemented by WebSphere Application Server, the
WebSphere Application Server administrator can specify who can access a
given resource. As we show later there are certain simple rules as to how
conflicting permissions between users and groups are handled.
122 Linux for WebSphere and DB2 Servers

Figure 42. Login Page for WebSphere Application Server.

We went to the WebSphere Application Server manager page at
http://servername:9090, typed in the admin password, and logged into the
system.

We got the screen shown in Figure 42.
WebSphere Application Server technology 123

Figure 43. Login page for WebSphere Application Server starts with the Introduction page

Then we clicked the Security folder on the left navigation frame.
124 Linux for WebSphere and DB2 Servers

Figure 44. Administering WebSphere Application Server

We have now logged in, and reached the Security page. Let us now
understand how the system really functions.

8.1.2 Realms
Realms are used to organize users, groups, and ACLs in a structured way to
protect Web resources. In the context of WebSphere Application Server,
realms are in particular used for two different purposes: to authenticate a
client and to decide which remote servlets to trust. In this section, we will
familiarize you with how these are accomplished using the concept of realm.

The system has three realms built into it:

1. defaultRealm

2. servletMgrRealm
WebSphere Application Server technology 125

3. UNIX

Here is what we can do with these realms:

1. defaultRealm

The users registered in this realm are given permissions to execute
certain servlets. Typically, the system administrator would include, in this
realm, the users who are expected and permitted to access the servlets on
the system, and the resources that are to be protected. The administrator
can also add groups, and ACLs to facilitate the handling of these.

2. servletMgrRealm

This realm contains a list of servlet-signers. The system administrator
would add into this realm certificates of those signers whose signed
servlets would be trusted to run on the server.

3. UNIX realm

This realm is used to give the users of the system who already have IDs
on the server access to the servlets through the Web. The system
administrator cannot add or delete any users from this realm. The users in
this realm will gain access to the servlets pretty much in the same way as
those in defaultRealm, with keying in similar user IDs and passwords. This
has been added to save the system administrator the trouble of creating
duplicate IDs, and the other to run servlets. The system administrator
would add to this realm those resources that the users who have a login
into the server can access. Apart from the fact that the system
administrator cannot modify the user list, this realm functions pretty much
in the same way as the defaultRealm.

We went browsing through the directories to get some specific information on
where data is stored about realms. Our WebSphere Application Server was
installed in <as_root directory>, and we went to <as_root>/realms, where
there was one file corresponding to each realm. We found these files to be
text files, capable of being opened by notepad, containing information about
the Java class name and the directory associated with this realm. We also
saw that the defaultRealm, the servletMgrRealm and the UNIX realms, which
we will be working with extensively, have different classes associated with
them.

The file name and content for the defaultRealm are given below.
126 Linux for WebSphere and DB2 Servers

Figure 45. D:\WebSphere Application Server\realms\defaultRealm

The defaultRealm is implemented using the class
com.sun.server.realm.sharedpassword.SharedPasswordRealm, which
according to Sun's documentation, implements a very simple authentication
database that stores user passwords in a text file. We confirmed this by going
to the data/defaultRealm subdirectory as indicated in the file and opening the
file named keyfile. We saw all the users we had created in this realm, and
their passwords.

The entries on the left are the user names created in the defaultRealm and
the entries on the right are their passwords, encoded, not encrypted, in
base64 format. Since the passwords can be easily decoded by any
base64-to-binary converter, access to this file should be restricted using the
options available in the operating system. Also, we tried hacking into the
system, by adding a user name and a base64-encoded password into this file,
and then accessing the system as the newly created user. It worked. Hence,
this file ought to be protected at all costs by any means available in the
operating system. The consolation, however, is that this file is in no way
accessible from the Web, and any hacker must not find a way to access this
file from the intranet, by logging on to the machine as a user.

The file name and content for the servletMgrRealm are given below.

@(#)defaultRealm 1.4 97/09/10
#
Configuration for the "default" realm, a low-security shared-password
realm used for demo purposes.
#

classname=com.sun.server.realm.sharedpassword.SharedPasswordRealm
directory=realms/data/defaultRealm

Narayan::c3cxNTA0cg==
Tintin::c3cxNTA0cg==
jeeves::amVldmVz
Wooster::c3cxNTA0cg==
Popye::c3cxNTA0cg==
admin::YWRtaW4=
Asterix::c3cxNTA0cg==
pistoia::c3cxNTA0cg==
WebSphere Application Server technology 127

Figure 46. <as_root/realms/servletMgrRealm

The servletMgrRealm is implemented using the class
com.sun.server.realm.certificate.CertificateRealm, with the certificate class
name sun.security.x509.X509Cert. This will provide access to users based on
their certificate, to be enrolled with it. Hence, users in this realm will be
identified by their certificates, and can thus access their resources. Users, in
this case, really means servlet-signers.

The file name and content for the UNIX realm are given below:

Figure 47. <as_root>/realms/UNIX

The UNIX realms contain, as mentioned before, users that are already
present in the system; in other words, those who have logins in the UNIX
machine in question. These same logins and passwords can be used to
access the services offered by WebSphere Application Server remotely.

Also, if you open the realms directory, you would see yet another realm,
called the adminRealm, although this does not show up on the GUI. This is
used to store information pertaining to the administrator's user ID and
password. We opened the file <as_root>/realms/data/adminRealm/keyfile and
we found only one line in this file:

@(#)servletMgrRealm 1.5 97/09/10
#
Configuration for the "servletMgr" realm, used to control the privileges
assigned through the server sandbox.
#

classname=com.sun.server.realm.certificate.CertificateRealm
certclassname=sun.security.x509.X509Cert
directory=realms/data/servletMgrRealm

@(#)UNIX 1.4 97/09/10
#
Configuration for the "UNIX" realm, providing access to user accounts
available through the UNIX getpwent family of calls. Uses a local
directory to store ACLs; doesn't support UNIX groups, and currently
requires some POSIX-standard native code.
#

classname=com.sun.server.realm.unix.UNIXRealm
128 Linux for WebSphere and DB2 Servers

admin::YWRtaW4=

This line represents the administrator's user ID, admin, followed by the
password encoded in base64 format.

8.1.3 Users
The WebSphere Application Server administrator, named admin, can create
any number of users in the system. These users are to be created under
defaultRealm or servletMgrRealm, but not under UNIX, for the reason
mentioned earlier. It is not possible, using the WebSphere Application Server
Manager GUI, to add a new user under the adminRealm, so no new
administrators can be created.

If the WebSphere Application Server administrator is spoofed, by adding
another user ID and password in the file WebSphere Application
Server_root/realms/data/adminRealm/keyfile, the newly added user can also
create a user. We made this experiment: we created another administrator by
manually adding a new user name in the keyfile below the adminRealm
directory, followed by a password that we encoded in base64 format using
again the binary-to-base64 converter. When we logged in the WebSphere
Application Server Manager as the new administrator, we were really able to
add new users under the defaultRealm and the servletMgrRealm. However,
the WebSphere Application Server development team strictly warned us
against accessing or modifying these files directly, since these might have
unpredictable effects on the functioning of the system.

The following is how to create a new user in the defaultRealm. If a user is
created under the defaultRealm, the administrator sets the password for the
user, which cannot be changed by the user. This could have some security
implications, since it is preferable to change passwords frequently. However,
the only way the users can be permitted to change their passwords directly is
by having a servlet do the password changing, and this will mean that the file
storing the passwords is accessible from the Net. If you so desire, you could
write a servlet that takes the user ID and password, takes the new password,
encodes it in base64 format, and replaces the old password with the new
password in the file WebSphere Application
Server_root/realms/data/defaultRealm/keyfile. This would obviate the
necessity for an administrator's intervention to change the password for those
using basic authentication.

Let us now go through the process of creating a user, the way we did it. From
the Security options, choose Users and from the drop-down Realm list box,
choose defaultRealm.
WebSphere Application Server technology 129

Figure 48. Users

You can see that we have already created an interesting group of users. The
way we did it was to simply click the Add button at the bottom, fill in the form
that is automatically brought up, and click OK.
130 Linux for WebSphere and DB2 Servers

Figure 49. Create User

Creating a user in the servletMgrRealm implies creating a user whose
signature on servlets is valid. In later sections, we will explain how servlets
can be loaded remotely, and there you will see that it is possible to control
access permissions to remotely loaded servlets based on who signed it. For
this feature, it is important to enter all the signers in one place first. The users
in servletMgrRealm are those whose signatures on the servlet WebSphere
Application Server will recognize.

Based on who signed the JAR file containing the servlet, the servlet will be
given permissions to perform various actions, such as reading from a file,
writing to a file or opening a remote socket. The good thing about this is that
the permissions can be controlled finely, in the sense that the administrator
can decide the servlets signed by which servletMgrRealm user to be given
permissions to read system files, and which ones are to be permitted to write
to them, and which ones to be permitted to open remote sockets, etc. Note
WebSphere Application Server technology 131

however, that all servlets signed by a particular user will have the same
permissions.

To create a user in the servletMgrRealm, here is what has to be done. To say
to WebSphere Application Server to trust all servlets signed by so-and-so to
such an extent, we first have to give WebSphere Application Server the public
key of the entity to verify the signatures. To register a servlet-signer, you
would first have to get the signer to sign a JAR file, put it on a Web server,
and give the URL of that JAR file at the time of registering the user. Notice
that we did not say that the signed JAR file must contain a servlet class. In
fact we were also able to add a new user under the servletMgrRealm by
presenting to WebSphere Application Server a signed JAR file containing a
simple text file.

Now we will show you how to create a new servlet-signer, step by step. First,
we went to the Security page under servletMgrRealm.

Throughout this chapter, we use the terms servlet-signer and user in
servletMgrRealm interchangeably. These two refer to the same thing, really,
since a user in the servletMgrRealm is actually a signer of servlets, as we have
explained earlier.

Servlet-Signer
132 Linux for WebSphere and DB2 Servers

Figure 50. Adding a User in the servletMgrRealm

We clicked Add. Then we filled in the particulars as shown.
WebSphere Application Server technology 133

Figure 51. Users

The URL http://rhsrv3.itso.ral.ibm.com/dumb.jar.sig that we entered
pointed to the location (<http server root>/htdocs/) containing the JAR file that
had been signed by the particular signer we wanted registered. Three
important points must be considered:

1. When you enter the User Name in the above panel, you do not have to
type the name that is registered in the certificate. The User Name that you
enter here is simply the name of the servlet-signer that WebSphere
Application Server identifies as the owner of the certificate.

2. Even if the above panel has a field named Certificate URL, what
WebSphere Application Server really expects you to type there is the URL
of a JAR file signed by the trusted user you want to add.
134 Linux for WebSphere and DB2 Servers

3. The signed JAR file is not supposed to contain a servlet class. Actually,
you could jar whatever file, even a text file, sign it, and use that file to add
a user under the servletMgrRealm.

This is enough to add a user under the servletMgrRealm, but now we want to
show you how we created the signed JAR file dumb.jar.sig to which the
Certificate URL points.

To produce the JAR file dumb.jar from the class file DumbServlet.class, we
used the command:

jar cvf dumb.jar DumbServlet.class

In order to add a servlet-signer to the servletMgrRealm, we needed to use the
javakey commandline tool. The javakey.exe file comes with the JDK in the bin
directory below JAVA_HOME. It is a commandline utility that can create
entities, designate them trusted or untrusted, create DSA key pairs, sign
certificates, etc. Again, type javakey to get all the possible options. We
recommend the JavaSoft Web site
http://www.javasoft.com/security/usingJavakey.html, which deals with how
javakey is to be used. However, you can see how we did it now.

First, we created the entity narry through the following command:

javakey -cs "narry" true

We then generated a key pair for the entity:

javakey -gk "narry" DSA 512 narry_pub narry_priv

Then we created a certificate directive file as shown, and stored it in the file
cert.direc:

A discussion on JAR files in JDK 1.x is found at http://java.sun.com/products/

Notice, however, that even if the Java support that our Web server used was
still 1.1, no differences have been noticed between the jar utility of JDK 1.1 and
the jar utility of JDK 1.2. You can therefore apply the same considerations.

However, the technique to sign a JAR file changes in JDK 1.2 from what it was
in JDK 1.1. When IBM HTTP Webserver and WebSphere Application Server
support JDK 1.2, you will have to use the new security features and tools
provided by JDK 1.2.

JAR files and signed JAR files
WebSphere Application Server technology 135

Then we created a certificate using:

javakey -gc cert.direct

We had already created a JAR file, named dumb.jar from the class file
DumbServlet.class. We then created a signature directive file like the one
shown, and stored it in sign.direc:

Then, finally, we signed the JAR file dumb.jar, using:

javakey -gs sign.direc dumb.jar

to obtain the file dumb.jar.sig. Notice that a signed JAR file in JDK1.1 carries
the double extension .jar.sig, but in JDK1.2 JAR files keep the extension .jar
even when they are signed. Keep this difference in mind when IBM HTTP
Webserver and WebSphere will have a full JDK 1.2 support.

Note that we used the DSA algorithm, which ships free with JDK. The
common standard for X.509 certificates is, however, RSA (though this is not
required by the standard).

In this way we have just shown you the full process necessary to create a new
user, or servlet-signer, under the servletMgrRealm. As you can see, if you
want to add a user to servletMgrRealm, you have no other choice than to
generate a signed JAR file and then point to its URL, even if it is not required

issuer.name=narry
issuer.cert=1
subject.name=narry
subject.real.name=Narayan Raghu
subject.org.unit=ITSO
subject.org=IBM
subject.country=US
start.date=02 Jun 1999
end.date=01 Jun 2000
serial.number=1500
out.file=narry.x509

signer=narry
cert=1
chain=0
signature.file=narrySig
136 Linux for WebSphere and DB2 Servers

that the signed JAR file contain a servlet class. As we said, a signed JAR file
containing a text file works fine anyway.

What about new users in the UNIX realm? This realm is used to give access
to users who already have an ID on the UNIX machine, to the servlet
resources on the server. You will not be able to create users here, since
WebSphere picks up information about the UNIX users from the operating
system it is running on. We will talk more about this when we talk about ACLs.

At this stage, the only form of authentication of users supported is the basic
authentication, with user ID and password, and the only realm that can be
used to store user profiles, such as which servlets the user is permitted to
run, and which of these servlets can access system resources, is the
defaultRealm, unless you would not mind programming on WebSphere using
the JDK APIs.

The user that you can create in the servletMgrRealm is used only for signing
servlets that are to be remotely loaded. In more unambiguous terms, the user
in the defaultRealm is not the same as, or even similar in functionality to the
user in the servletMgrRealm. The former is a client accessing the resources
the server and the servlets have to offer, and the latter is a person whose
signatures on JAR files containing servlets the WebSphere has been
instructed to trust. At this stage, we would like to mention that for obvious
reasons, it is not possible to create users in the UNIX realm. These users are
read off the underlying operating system.

8.1.4 Groups
Let us now see how to create groups. To begin with, let us stick to
defaultRealm. Click the Groups link, and it will take you to the groups page,
as shown in Figure 52 on page 138.
WebSphere Application Server technology 137

Figure 52. Groups

As you can see, two groups have been created. You can create another one
by clicking the Add Group button. You can enter the name in the message
box, and click Add, as shown in Figure 53 on page 139.
138 Linux for WebSphere and DB2 Servers

Figure 53. Add Groups

Groups are not really entities in themselves. They are used to make it easier
for the administrator to give or revoke permissions to a number of people at
the same time. Hence, we now have to add users into groups. Note that a
user can belong to more than one group, and a group can have any number
of users. In the beginning, all the users within the realm are non-members of
a newly created group, meaning that they appear in the Non-Members list.
The admin can choose to add any number into the group by clicking the Add
button, and remove any number by clicking the Remove button. Note that the
union of the users in the Members list and the users in the Non-Members list
is the list of users in the realm. Also note that no user can be a member and a
non-member at the same time; in other words, the intersection of the two sets
is always a null set.
WebSphere Application Server technology 139

Figure 54. Add to and remove users from groups

Now, if you are as inquisitive as we were and want to go to the file and check
how this information is stored, go to the directory WebSphere Application
Server_root/realm/data/defaultRealm and type out the file with the same
name as the newly created group. We typed the file
/opt/IBMWebAS/realms/data/defaultRealm/Cartoon_Club.grp and we got a
listing of the user names we just added into the group.

You will notice that a new file is created for each group, and each new user is
added to the file named keyfile in the appropriate directory. You could try to
edit these files yourself and try crashing the system, but we did not do that
and so cannot predict the result. Note that groups cannot be created in the
servletMrgRealm.
140 Linux for WebSphere and DB2 Servers

8.1.5 Access control lists
Now, let us tackle one of the more important parts of the WebSphere
Application Server setup - the ACLs. The administrator can add ACLs or
delete existing ACLs in a given realm. The addition of an ACL is pretty similar
to the addition of users and groups. We will show one just for completeness.
Select Access Control List from the Security tree and then click Add ACL:

Figure 55. Security - Access Control Lists page
WebSphere Application Server technology 141

Figure 56. Addition of ACLs

You can type the name in the message box and then click Add.

Now, what do you do with an ACL? You simply add or remove permissions for
certain users and groups for certain resources in the ACL. Note that all this
happens only within the realm, and it is not possible to add a user registered
under a different realm to an ACL in this one. Let us now try to add some
permissions. Click Add. You should see one of the following three screens,
depending on whether you have marked User, Group or Computer:
142 Linux for WebSphere and DB2 Servers

Figure 57. Adding file access permissions to users
WebSphere Application Server technology 143

Figure 58. Adding file access permissions to groups
144 Linux for WebSphere and DB2 Servers

Figure 59. Adding file access permissions a specific computer

Note the file access permissions you can give to users, groups, and specified
computers on the network. The file permissions are the same as the HTTP
methods of the form handling protocol:

1. GET

This method is used for sending form data. The data is sent to the server
from the client by appending the data in the URL field. The same stream is
used for the requested URL and the form data.

2. PUT

This is used to put files on the server. You might not have access to this
method from a normal browser. However, most HTML authoring tools use
this method to put an edited HTML page onto the server.
WebSphere Application Server technology 145

3. POST

As the submitted form data got larger, it was found that the URL field was
inadequate to handle this data. Further, it is really not very graceful to
clutter up the URL window. The POST method is used to send data from
the client to the server. It is different from the GET method in that another
stream is used to send the data.

4. DELETE

This option, like the PUT method, might not be available from your normal
client. Moreover, though specified in the HTTP protocol (see
http://www.w3.org/Protocols/), most servers do not grant permission for
this action. This is used to delete a file from a server. This method might
be supported by some Web authoring clients, but as mentioned before,
might not be supported by your server.

Let us now add some permissions both to users and groups, and see if they
work. But before we verify if they work, we have to associate a resource with
them. So, let us go ahead with granting permissions first. The following
screens are those of us granting permissions to users, groups, and
computers. Since these are pretty much self explanatory, you probably would
not like redundant sentences between them. However, in the rest of the
chapter you will see how these permissions really work.
146 Linux for WebSphere and DB2 Servers

Figure 60. Adding no servlet permission to user admin
WebSphere Application Server technology 147

Figure 61. Adding file post permission to user Johnny_Bravo
148 Linux for WebSphere and DB2 Servers

Figure 62. Adding file permissions Get, Put and a Post to user jeeves
WebSphere Application Server technology 149

Figure 63. Adding file Put permission to group Cartoon_Club
150 Linux for WebSphere and DB2 Servers

Figure 64. Adding file permissions Put and Delete to computer Romeo

Note that all the permissions were added in one particular ACL, the
CartoonsACL that we had defined. Now, if you come over to the main screen
and look at the bottom window, you can get complete information about how
the access controls are set. Users, groups, and computers for which
permissions were set appear in the Principal tree.
WebSphere Application Server technology 151

Figure 65. Principal tree

You must click the plus sign (+) beside each item on the list to see the specific
permissions.

Figure 66. Checking specific permissions

Notice that Figure 64 shows the particular case when you want to allow
access only from specific computers. In the Computer field, you can enter the
name of the host either as a host name or as an IP address. You can use the
wildcard character * when entering a host name, for example *.com. Requests
that originate from hosts other than the specified one will be denied.

Note that you cannot add ACLs in the servletMgrRealm. However, you can
add permissions to either servlets or files in the servletACL. The servletACL
is the only ACL that is available in the servletMgrRealm. This is created
automatically, and cannot be deleted. Here is where you would have to
indicate what permissions you would like to give to servlets signed by a
152 Linux for WebSphere and DB2 Servers

particular user in the servletMgrRealm. We will deal more with this in later
sections.

The UNIX realm, however, behaves pretty much like the defaultRealm, except
for the fact that the user list cannot be modified. Notice that ACLs can be
added to the UNIX realm.

8.1.6 Resources
A resource, in this context, is essentially a service the Web server has to
offer, which needs to be protected. HTML pages and servlets that need not
be protected are not considered resources in this context. In general, to
restrict access to static HTML pages, you would have to use the facilities
provided by IBM HTTP Web server, or any other Web server you might be
using, and you would use WebSphere Application Server to control access to
servlets. However, WebSphere Application Server, using the
servletMgrRealm, allows the administrator to protect also the resources that
servlets can access, such as files and socket connections. This could create
a conflict with the underlying Web server, in that access to a Web page could
be denied by the Web server and allowed to a servlet by WebSphere
Application Server. In general, the relationship between the Web server and
WebSphere Application Server about conflicting permissions is as follows. If
the Web server first denies access to a resource, then access is denied to
WebSphere Application Server too. If the Web server permits the access,
then it is up to WebSphere Application Server to protect the resource. In other
words, it is the Web server that takes precedence.

Put briefly, access control in the WebSphere Application Server security
model is all about how WebSphere Application Server gives users and groups
access to several of the resources using predefined ACLs.

The administrator of WebSphere Application Server can add new resources,
in the sense that he or she can declare more of the existing resources to be
protected. We tried this out, and to do so, we first went to the Resources
screen, which for the defaultRealm looked like the following figure, and
clicked Add.
WebSphere Application Server technology 153

Figure 67. WebSphere resources

The second screen (Figure 68) shows the kind of resource you can add to an
ACL.
154 Linux for WebSphere and DB2 Servers

Figure 68. Adding resources to ACLs

The screen begins by confirming that we are still in the defaultRealm. The
next line shows the type of authentication. Basic Authentication will ask the
client to key in a user ID and password, which will be sent to the server over
the network. Digest Authentication will do the same, but the information will
be sent to the server in an encrypted form over the Net. SSL Authentication,
which we expect that you will find disabled on your screen, will authenticate
the user through their client certificate. However, this is not supported in the
simple installation of WebSphere Application Server. You could gain this
functionality by writing your own realm, using the JDK APIs.

Next is a drop-down list box containing a list of all the ACLs in the realm.
WebSphere Application Server permits us to add a particular resource to only
one ACL, since if the same resource is in more than one ACL, there might be
conflicts in permissions. We tried adding a particular resource that already
belonged to one ACL, to yet another ACL, and we found that the resource
WebSphere Application Server technology 155

now belonged to the new ACL, but not to the older one. In other words, status
of a resource can be overwritten.

Next is the option to choose the resource to protect. The administrator can
choose between a servlet and a file. If the resource is a file or a directory
containing HTML pages, the administrator is to key in the complete path
name.

Figure 69. Adding a file resource

If the resource in question is a servlet, it can be selected from the drop down
list box.

8.1.7 Examples of Security Using HTTP and SSL
In this section we will illustrate the differences between the two HTTP
methods, GET and POST, that are commonly used by forms to handle the
information sent to the server. We will also see the security implications of
how GET and POST perform over plain HTTP and SSL.
156 Linux for WebSphere and DB2 Servers

To do this, we wrote a very simple servlet that welcomes the user, with the
entered user name. This servlet is invoked from a simple HTML page,
alternatively using the GET and POST methods. The HTML code is as
shown:

Figure 70. The id_get.html file

When the GET method is used, the filled-in form inputs variable names and
their values are sent to the server by simply appending them to the URL of
the next request. We show here the source code of the servlet that receives
the form values from the HTML page:

<HTML>
<HEAD>
<TITLE> The Get Method </TITLE>
</HEAD>
<BODY BGCOLOR="white">

<CENTER><h2> Please enter your particulars </h2></CENTER>
<FORM Action="/servlet/EchoServlet" Method="Get">
<PRE>
User Name : <INPUT Type="TEXT" Name="userid">
Password : <INPUT Type="password" Name="passwd">
<INPUT Type="SUBMIT">
</PRE>
</FORM>
</BODY>
</HTML>
WebSphere Application Server technology 157

Figure 71. The EchoServlet source code

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class EchoServlet extends HttpServlet
{

public void init(ServletConfig conf) throws ServletException
{

super.init(conf);
log("Echo Server Initialized");

}

public void service(HttpServletRequest req, HttpServletResponse res)
throws IOException, ServletException
{

String userid = req.getParameter("userid");
ServletOutputStream ops = res.getOutputStream();
res.setContentType("text/html");

ops.println("<HTML><HEAD><TITLE>Generated by a
Servlet</TITLE></HEAD>");
ops.println("<BODY>");
ops.println("<CENTER><H1> Hello </H1>");
ops.println("Welcome, " + userid + " how are you today");
ops.println("
");
ops.println("</BODY></HTML>");
ops.close();

}
}

158 Linux for WebSphere and DB2 Servers

The following figure shows the HTML page in a browser, after entering the
user name and password:

Figure 72. User ID and password

Note that what you type in the password field appears hidden by a sequence
of asterisks, rather than the characters you typed in. This happens to grant
privacy and security while you type your password, so that people sitting near
you cannot read what you enter. Actually, the asterisks grant only the
appearance of privacy and security, as we are going to demonstrate.

Save the above code as EchoServlet.java, and compile it using jdk117_v3.
You will need to set your CLASSPATH variable to include the javax
package. At a bash shell command line, type:

export CLASSPATH=<jdk_root>/lib/classes.zip:<was_root>/lib/jsdk.ar

where <jdk_root> is the directory leading to jdk117_v3; in our case, it is
/usr/local/jdk117_v3.

Where, <was_root> is the directory leading to IBM WebSphere; In our
case, it is /opt/IBMWebAS/lib.

Note
WebSphere Application Server technology 159

If you read through the servlet code, you see that the servlet will simply
welcome the person using the user name entered, and will do nothing with
the password. We added the password field here to show how confidential
information flows between client and server when a form uses GET or POST
through HTTP or SSL. The two fields, the User Name and Password, have
been used to represent public data (that you would not mind people reading)
and private data (confidential data, which you would not like any third-party
members reading, such as your passwords or credit card number). We have
just shown you how, on the screen of the client machine, confidential
information is treated differently from public data.

Figure 73. Confidential information displayed on the URL field

Now, let us try doing the same with the method POST. The servlet code
remains the same. In the HTML page, let us simply change the method to
POST. Note that this would not be possible with simple CGI; you would have
to make some modifications in the CGI script and recompile, unless you have
taken care to put an if condition in the script to check what method is used.
160 Linux for WebSphere and DB2 Servers

Figure 74. The id_post.html file

Figure 75. Using the POST method

<HTML>
<HEAD>
<TITLE> The POST Method </TITLE>
</HEAD>
<BODY BGCOLOR="white">

<CENTER><h2> Please enter your particulars </h2></CENTER>
<FORM Action="/servlet/EchoServlet" Method="POST">
<PRE>
User Name : <INPUT Type="TEXT" Name="userid">
Password : <INPUT Type="password" Name="passwd">
<INPUT Type="SUBMIT">
</PRE>
</FORM>
</BODY>
</HTML>
WebSphere Application Server technology 161

Figure 76. After using the POST method

Notice how the passed fields are not visible, this time, as a part of the URL (or
anything else). This happens with the POST method because the form
variable names and values are sent in the HTTP request body. This implies
that they are not shown by the browser as part of the URL, which instead, is
sent in the HTTP request header. If the GET method isuses, the URL and the
data both go in the HTTP request header. This demonstrates that at least
from this point of view the POST method grants more privacy and security.
162 Linux for WebSphere and DB2 Servers

Figure 77. Adding a servlet resource

The help link from this section is very meaningful. You can read it by clicking
the Help button.

Now let us try out the real stuff. We set an ACL called the CartoonACL, and
registered EchoServlet as a resource in the CartoonACL, as shown in Figure
77. The Resources window looks somewhat like Figure 78 on page 164.
WebSphere Application Server technology 163

Figure 78. The resources window

Next, we add two more users under Security->Users: Asterix and Popye.
Further, within the CartoonACL, we give the user Asterix permission only to
POST, and the user Popye permission only to GET. At this stage, the ACL
window looks somewhat like Figure 79 on page 165
164 Linux for WebSphere and DB2 Servers

Figure 79. The ACL Window

You would do well at this point to refer back to the source code of
EchoServlet, which we wrote earlier in this chapter to test the POST and GET
methods (see Figure 70 on page 157, Figure 74 on page 161 and Figure 71
on page 158).

Let us now try to access the EchoServlet through the pages id_post.html and
id_get.html, which use respectively, the POST and GET methods to
communicate with the Web server. We opened up the Netscape window to
access the HTML pages, and not surprisingly, there was no trouble getting to
the pages themselves.

When we clicked Submit from the page id_post.html, a window popped up
asking for a user name and password. Note that the page containing the
same fields (User Name and Password) is purely coincidental and has
nothing to do with access restrictions.
WebSphere Application Server technology 165

Figure 80. Asking for authentication

We entered the user ID Popye and his password spinach. The password
appeared hidden by a sequence of asterisks. Remember that Popye had
permission to GET and the id_post.html page uses the POST method.
166 Linux for WebSphere and DB2 Servers

Figure 81. Entering unauthorized user ID and password

And we got the following screen:

Figure 82. Authorization failed

So we understand now that the user Popye, who has no permission to POST,
cannot invoke a servlet protected by WebSphere Application Server using the
POST method. Then we tried clicking on the Cancel button, and it gave us
this result:
WebSphere Application Server technology 167

Figure 83. No Access to the servlet for an unauthorized user ID

After that, we reaccessed the id_post.html page and tried posting the
information, but this time we gave the user ID Asterix and the corresponding
password.

Figure 84. Accessing the servlet with the proper user ID

And since Asterix was authorized to POST, we got access to the output of the
servlet as expected.
168 Linux for WebSphere and DB2 Servers

Figure 85. Got access to the servlet

With that confirmed, we tried to use the GET method. We accessed the page
id_get.html, and tried submitting the information. Here is what we got:

Figure 86. Accessing using the GET method

Why was that? The browser maintains the user ID and password mapped with
a specific URL. This makes it convenient for the user, by not requiring him or
her to key in the user ID and password with each request. The browser,
however, after getting the user ID information from the user for the first time,
stores it and sends it to the server each time. Hence, the browser sends the
same user ID information to the server over and over again, until the server
declines to accept it for some reason, upon which it pops up the window in
Figure 82 on page 167.

Note here that there is no way of telling the browser that you would like to
change the user ID, unless you would consider restarting the browser, upon
which the mapping the browser maintains between the user ID - password
pair and the URL is reset. Getting back to using our EchoServlet, we clicked
WebSphere Application Server technology 169

OK, entered Popye and his password and got regular access to the output of
the servlet.

Figure 87. Accessing using the GET method with proper user ID

Everything worked fine with the user Popye, since we had granted Popye
permission to GET and the HTML page id_get.html uses the GET method to
access the servlet.

Once again, notice that the dynamic information with the GET method is
always appended to the URL in the HTTP request header, and with the POST
method it is sent through the HTTP request body (see Figure 85 on page
169).

Now let us consider an interesting case. Suppose we want to run the servlet
without the HTML page - perhaps by giving the values at the URL (as in the
GET method), or maybe we have a servlet that takes no input at all. One
example for this could be a servlet that extracts information from a client
certificate and performs a certain action such as getting some information
from a database or simply welcoming the person by name. We will try to keep
our example simple. So let us write a rather simple servlet, that just says
Hello without taking any inputs. We admit that we could just as well have
written a static HTML page for this functionality, but we have mentioned the
use of a no GET or POST input servlet. Here is the code of a servlet that
really does nothing but give out static information. The name we gave to this
servlet was StaticServlet.
170 Linux for WebSphere and DB2 Servers

Figure 88. StaticServlet.java

What we now need to do is to restrict access to this servlet. So we add this as
a resource in the CartoonsACL. For details, refer to 8.1.5, “Access control
lists” on page 141.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class StaticServlet extends HttpServlet
{
public void init(ServletConfig conf) throws ServletException
{
super.init(conf);
log(" Static Server Initialized ");

}

public void service(HttpServletRequest req, HttpServletResponse res)
throws IOException, ServletException

{
ServletOutputStream ops = res.getOutputStream();
res.setContentType("text/html");
ops.println("<HTML><HEAD><TITLE>Generated by a Servlet</TITLE></HEAD>");
ops.println("<BODY>");
ops.println("<CENTER><H1> Hello </H1>");
ops.println(" Welcome, partner. How are you today");
ops.println("
");
ops.println("</BODY> </HTML>");
ops.close();

}
}

WebSphere Application Server technology 171

Figure 89. Addition of StaticServlet resource to the list

Note that we have not changed the permissions of either users or groups
within the ACL. We have just added another resource in the ACL. Asterix still
has permission only to POST, and Popye still has permission only to GET.
Now which of these do you think will be able to access the servlet? If you
guessed Popye, with the GET permission, you were right. As we have
mentioned before, the GET method uses the same stream for the form data
as well as the URL. By giving someone permission to do a GET, you are
really giving permission to connect using the URL stream. Obviously, if the
URL stream is not read, the particular file cannot be delivered at all. So, a
GET permission is required to read a file. Further, since GET uses the same
stream for data and URL, our guess is that the user that has permission to do
a GET method can run a servlet from the URL. We verified this, and here are
the relevant screens:
172 Linux for WebSphere and DB2 Servers

After adding StaticServlet as a resource in the CartoonACL, using a browser,
we went to the servlet directly pointing to its URL
http://rhsrv7.itso.ral.ibm.com/servlet/StaticServlet. On keying in the URL,
and pressing Enter, we were prompted to give the user name and password:

Figure 90. Prompt for user name and password to run a servlet

The system behaved pretty much as expected when we clicked Cancel, by
giving us the panel as in Figure 83 on page 168. Also, when we tried entering
the user ID as Asterix, since Asterix has the POST permission only, it gave us
a message saying Authorization failed (as in Figure 86 on page 169).
However, when we keyed in the user ID as Popye and the correct password,
we got the output of the servlet.

Figure 91. The output of the StaticServlet

Note that all that we found to be applicable to defaultRealm, we also found to
be applicable to the UNIX realm, except for adding users and groups. We
could add resources under the UNIX realm, create ACLs, add permissions for
the users created in the UNIX system, and get them to use these resources
by logging on through the browser.
WebSphere Application Server technology 173

8.2 Enterprise JavaBeans

Enterprise JavaBeans (EJBs) is a Java programming specification (currently
Version 1.0 and draft Version 1.1 of the specification is available), which
defines the EJB classes and the interfaces between the Enterprise
JavaBeans technology-enabled server and the component.

EJB were introduced to simplify the process of extending enterprise data to
the Web without having to code all of the middleware. EJB allows
programmers to write large programs in reusable chunks, or JavaBeans, that
can be reused, updated, and recombined to form new programs. Such
component-based programming makes it possible to develop, test and
maintain much more complicated programs —which may be distributed
across hundreds or thousands of servers — more quickly than ever before.

EJB: The convergence of these three concepts -- server-side behaviors
written in the Java programming language, connectors to enable access to
existing enterprise systems, and modular, easy-to-deploy components

Essentially, EJBs generate custom JavaBean components that leverage the
"plumbing" provided by middleware, instead of forcing developers to manually
code to the various APIs encountered in an enterprise. JavaBean
components are Java classes that conforms with a set of rules. These rules
defines a universal access method so the classes can be reused and
modularized. The rules are:

1. Have a default (no-arg) constructor
2. Follow naming conventions (get/set etc)
3. Impolement serializable
4. Be in a JAR with a manifest file that specifies JavaBean
5. Optional: throw/catch property change events
6. Optional: provide a BeanInfo class to enhance design time

EJB and JavaBeans components are conceptually related, but EJB is an
elaboration of the JavaBean software component specification. The EJB
specification defines a container model, a definition for each of the services
that this container provides to an EJB, and the management capabilities of
the container.

Based on the self-contained, manageable components of Enterprise
JavaBeans, this specification provides dynamic binding of new business logic
to the underlying data storage and transaction services, as well as to clients,
existing data and applications, the network infrastructure, and the server
platform. The benefits of this dynamic adaptibility are realized in greater
flexibility for deploying, managing and reusing business logic.
174 Linux for WebSphere and DB2 Servers

8.2.1 EJB Structure
The structure of an EJB is simple: several server-side Java files are archived
in a JAR file, and includes a MANIFEST descriptor file that describes the JAR
file’s contents.

8.2.1.1 EJB classes
The developer creates EJB classes. The EJB classes are the Java classes
that represent the business-logic components. Two types of EJBs have been
specified: Session Beans, which perform session management to Java
clients, and Entity Beans, which take on the role of mapping data sources to
Java classes and therefore making these data sources transparent to users.
See Figure 92 on page 175.

Figure 92. EJB Container

Session beans - session beans represent a process that will be performed
on the server. Each client will request a service from a session bean, the
client will have its own instance of the bean; instances of session beans
cannot be shared among multiple clients. Session beans can be separated
into two types: stateless and stateful:

Stateless beans do not store any information relating to a client between
calls. For example, a bean that determines whether a part number is valid
will be stateless, as it simply processes a number passed as an argument
each time it is called.

EJB Container
Lifecycle, transaction mgr. security

(JTA)

Enterprise JavaBeans

Session Objects
Entity Objects

JNDI

JDBC

SQL J

JMS

JAS, JCE...

JavaMail

J IDL

RMI

Java JVM & Core Classes

Servlets JSP
WebSphere Application Server technology 175

Stateful beans store information between calls from a client. For example,
a bean that provides the next available value in a sequence will be stateful,
as it will need to remember the last value returned to a client. For the
developer, it's important to know that session beans do not survive if a
server is restarted; in that event, the client must reestablish a new session
object

Entity beans - Entity beans map a Java class to a data source. The source
could be a single row in a database, an entire table, or some form of legacy
data not represented in a database. Each entity bean has a primary key
associated with it that identifies the data within. It would be difficult to control
changes to multiple copies of the same data, so only one instance of an entity
bean exists for any given primary key in a system (even in a distributed
system).

Entity Beans can be separated into two types: beanmanaged and container
managed. These types refer to the way the data held in the bean is
transferred to the underlying persistent storage:

1. Container-managed entity beans rely on the container in which they
run to provide all database access calls. This is the simplest form for
developers to use, because the developer does not need to worry
about how the data is moved to and from the persistent store.

2. Bean-managed entity beans provide all the database access calls
within the bean itself. The disadvantage of this type of bean is that it
ties it more closely to the underlying architecture. But in the event of a
server being restarted, this will be transparent to clients of entity
beans.

8.2.1.2 EJB Interfaces
Each EJB component has two interfaces associated with it: EJBHome and
EJBObject. The classes that represent these interfaces are created when the
EJB is loaded into the container.

EJBHome - Both session and entity beans have create methods that will
return an instance of the EJBObject class. There may be a number of these
methods, each taking different parameters depending upon what data is
required to initialize the EJB. In the case of entity beans, there will also be
"finder methods," which take a primary key as a parameter and return a
reference to a collection of EJBObjects matching that key (this may be one or
more objects).

EJBObject - An instance of the EJBObject class is used by the client to
access the methods provided by the EJB component. The EJBObject class
176 Linux for WebSphere and DB2 Servers

acts as a proxy, putting the necessary infrastructure-specific code between
the client and the EJB component.

Home and Remote interfaces and classes, the role of which are to control
access to EJB classes, are generated as part of the development process.

8.2.1.3 EJB deployment
A deployment descriptor and the MANIFEST are generated at deployment
time.

JAR files reside in an EJB container which provide essential services
(naming, state management, transactions, security, and others) to the EJBs.
The run time environment, including system services and resource
management, is provided by an EJB server.

8.3 Extensible Markup Language (XML)

XML is a standard data format for exchanging structured documents on the
Web. XML is a World Wide Web Consortium (www.w3c.org) standard that lets
you create your own tags. This standard extends the traditional HTML tags by
providing a structured way of defining data over the Web. The data is defined
using tags that describe what each piece of data is.

For example, following is a mail address formatted in HTML and XML
documents:

The address stored in an HTML document provides no additional information
about the data itself. The address stored in an XML document provides data
attribute information. With XML, we can separate the content and
presentation of information on the Web. The information content is structured
and can be easily referenced by programs. Programs such as Web agents
that use XML parsers will be able to extract the information from documents.

HTML XML

<HTML>
<BODY>
<P>IBM- ITSO
Dept ABC, Building 123

1001 Winstead Drive
Cary, NC 27513</P>
</BODY>

<ADDRESS>
<COMPANY>IBM- ITSO</COMPANY>
<ADDR1>Dept ABC, Building
123</ADDR1>
<ADDR2>1001 Winstead Drive</ADDR2>
<CITY>Cary</CITY>
<STATE>NC</STATE>
<ZIP>27513</ZIP>
</ADDRESS>
WebSphere Application Server technology 177

Such Web agents will be very useful for Web search engines to find
documents on the Web more intelligently.

For more thorough discussions on XML, please refer to the IBM XML
resource page:

http://www.ibm.com/developer/xml/

8.3.1 XML Parser
XML parsers are programs that read, modify, and write XML documents. IBM
XML Parser for Java is a Java API package that lets an application developer
use Java objects that represent XML and HTML documents.

8.3.2 Document Object Model (DOM)
DOM is application programming interface (API) that can be used to
represent an existing XML document or generate an XML document. Using
DOM, application programs can share and modify an XML document. The
DOM object is created and stored in JVM’s computer memory and
represented as a tree data structure. This tree enables application programs
to:

• Perform tree operations such as modifying the XML document strucutre or
searching the XML document

• Share the document in computer memory with other programs

To create DOM objects, you must use a DOM-based XML parser such as
IBM’s XML Parser for Java (XML4J). Using XML4J, the DOM object is created
and stored in JVM’s computer memory. DOM-tree parsing requires that the
entire document tree be retained in Java virtual memory (JVM). However, in
the latest IBM XML4J version (V2.0.13, as of July 1999, is available at
http://www.alphaworks.ibm.com), XML4J allows DOM objects to be serialized.

A simple XML document, below, will generate DOM in Figure 93 on page 179.

<?xml version="1.0" ?>
<state stateid="MN">
<city cityid="mn12">
<name>Johnson></name>
<population numid="5000"/>
</city>
<city cityid="mn15">
<name>Pineville</name>
<population numid="60000"/>
</city>
<city cityid="mn20">
178 Linux for WebSphere and DB2 Servers

<name>Lake Bell</name>
<population numid="20"/>
</city>
</state>

Figure 93. DOM for the sample XML state document

DOM API packages information can be found on the WebSphere Application
Server directory at:

com.ibm.xml.parser package

http://<hostname>/IBMWebAS/doc/apidocs/Package-com.ibm.xml.parser.html

org.w3c.dom package

http://<hostname>/IBMWebAS/doc/apidocs/Package-org.w3c.dom.html

Where <hostname> is the domain name or IP address of the WebSphere
Application Server.
WebSphere Application Server technology 179

XML4J also provides Simple API for XML (SAX) and ElementHandler APIs.

8.3.3 Simple API for XML (SAX)
SAX is an event-driven parser, unlike DOM, it does not create a tree data
structure. It parses an XML document and generates events such as the start
of an element or the end of an element which trigger application tasks such
as reading in element names. In our mail address definition, a sequence of
SAX events are:

startElement: ADDRESS
startElement: COMPANY
characters: IBM- ITSO
endElement: COMPANY
startElement: ADDR1
characters: Dept ABC, Building 123
endElement: ADDR1
startElement: ADDR2
characters: 1001 Winstead Drive
endElement: ADDR2
startElement: CITY
characters: Cary
endElement: CITY
startElement: STATE
characters: NC
endElement:STATE
startElement: ZIP
characters: 27513
endElement: ZIP
endElement: ADDRESS

Application tasks that implements event handlers defined in the packages
are:

• com.ibm.xml.parser.SAXDriver
• org.xml.sax

Complete API packages can be found in the WebSphere Application Server
directory under:

http://<hostname>/IBMWebAS/doc/apidocs/com.ibm.xml.parser.SAXDriver.html
and
http://<hostname>/IBMWebAS/doc/apidocs/Package-org.xml.sax.html

Where <hostname> is the domain name or IP address of the WebSphere
Application Server.
180 Linux for WebSphere and DB2 Servers

8.3.3.1 ElementHandler
ElementHandler supports event-driven parsing of a DOM tree. Similar to
SAX, an application using ElementHandler can receive events. However, the
ElementHandler creates a DOM tree, while SAX does not.

ElementHandler supports the following API packages and can be found
online in the WebSphere Application directory:

com.ibm.xml.parser.Parser
http://<hostname>/IBMWebAS/doc/apidocs/com.ibm.xml.parser.Parser.html

org.w3c.dom.Document
http://<hostname>/IBMWebAS/doc/apidocs/org.w3c.dom.Document.html

com.ibm.xml.parser.TXDocument
http://<hostname>/IBMWebAS/doc/apidocs/com.ibm.xml.parser.TXDocument.html

com.ibm.xml.parser.TXElement
http://<hostname>/IBMWebAS/doc/apidocs/com.ibm.xml.parser.TXElement.html

com.ibm.xml.parser.ElementHandler
http://<hostname>/IBMWebAS/doc/apidocs/com.ibm.xml.parser.ElementHandler.h

tml

where <hostname> is the domain name or IP address of the WebSphere
Application Server.
WebSphere Application Server technology 181

182 Linux for WebSphere and DB2 Servers

Chapter 9. Servlet design patterns for e-commerce

In this chapter we discuss different servlet design patterns for e-commerce.

9.1 Guiding principles

• e-commerce systems are very dynamic. Because the medium is changing
so rapidly, and the bar is constantly being raised as to what features and
implementations are state of the art, e-commerce sites evolve much more
quickly than traditional online systems.

• e-commerce system development is a multidisciplinary task that requires
the collaboration of a variety of disparate roles with differing skill sets,
concerns, and viewpoints. Tight time-to-market requirements for
e-commerce require teamwork. In addition, the integration of different
media and technologies requires these teams to be heterogeneously
composed.

Successful e-commerce systems will therefore be constructed with flexibility
and scalability in mind. Successful e-commerce development methodologies
will partition the development workload along well-defined competency lines
and facilitate communication between heterogeneous development teams.

9.2 High-level design patterns

In the following we discuss single function per servlet, tiered topology, and the
separation of processing and display responsibilities.

9.2.1 Single function servlets
In CGI-based applications, it is common practice to have a singular,
monolithic script that receives a parameter such as action to determine the
type of processing to perform. This results in brittle systems that resist
change. In contrast to this, the servlet API encourages the creation of a
number of processing components that each has specific functionality and
responsibilities. Quality servlet applications are designed in such a manner
that objects in the system be given clear and distinct responsibilities.

For example, rather than creating a monolithic servlet called Shop.class that
handles all aspects of an e-commerce application, the processing involved
with shopping would be broken into a number of servlets: AddItem.class,
Recalculate.class, Checkout.class, and FinalizeOrder.class. This allows
functionality to be redefined or added on the fly as servlets are reloaded or
© Copyright IBM Corp. 1999 183

added to the system. Classes with related functionality can be grouped into
the same JAR file for distribution if some packaging is required.

9.2.2 Tiered topology
Constructing Web applications using a tiered structure provides a number of
benefits to e-commerce development projects. Most notably, tiered structures
allow for parallelized development and provide for systems that are flexible
and extensible. HttpServlets should be used as a gateway to the underlying
shopping application by bridging the gap between HTTP requests and their
actual meaning for the business system being developed. Wherever possible,
servlets should defer business policy decisions to the handling provided by
the application's business components.

There are a number of different roles found in e-commerce development
projects. Each role has specific responsibilities and is filled by individuals with
a given skill set and perspective on the overall project. The same individual
may fill more than one role over the course of the project, but as projects
scale and additional staff are added, a separation between these roles
develops naturally.

Graphic designers develop the look and feel for the Web site, selecting colors,
fonts and page layouts that are attractive and facilitate a simple user
experience. These individuals generally have an understanding of the
capabilities and limitations of HTML and related client-side technologies such
as CSS and JavaScript.

The work of the graphic designers is passed to HTML production staff. HTML
production staff menbers translate the layouts of the graphic designers into
HTML. To accomplish this they have an understanding of the inner workings
of HTML and some knowledge of the HTTP protocol so they can pass
information to the server using HTML <FORM> and <INPUT> tags. They
should also have an understanding of JavaServer Pages (JSP), and the
nodding familiarity with the Java programming language JSP development
requires.

These inputs are received by code written by high-level servlet developers.
High level developers take requests from online users by way of the browser
and use them to manipulate server-side business objects. High-level
developers are well versed in the Java language and the servlet API.

Low-level Java developers handle the inner workings of these server-side
business objects. These individuals handle object synchronization and
184 Linux for WebSphere and DB2 Servers

persistence, and have familiarity with technologies and APIs such as JDBC,
RMI, and CORBA.

Dividing e-commerce applications into tiers allows for parallelized
development. After the capabilities of the Web application have been
determined, graphic designers can begin to develop the look and feel while
low level developers begin architecting business logic plumbing. As the
project progresses, the graphic designers hand their work off to the HTML
production staff while high-level developers begin to write servlets to
manipulate business objects according to user requests.

The goal in structuring these tiered frameworks is to provide a simple
interface for personnel operating at each level to communicate with the level
below in terms they understand. HTML production can be given a
specification outlining which servlets perform various functions, what
parameters should be sent, and what values are considered acceptable.
High-level developers should have a detailed Javadoc spec outlining the
public methods available from service servlets and documentation about the
proper use and manipulation of their business objects. Based on this they can
manipulate business objects in the session and know what behaviors to
expect. Low-level developers generally have their APIs already set out for
them as they leverage the existing persistence and synchronization facilities
while translating them to the application's business logic.

The servlet API has a number of features lending themselves to tier-based
development. By deliberately constructing the class inheritance structure,
different types of servlets can be created, each fulfilling roles within the
e-commerce application. Interservlet communication is to be used to pass
messages between these separate conceptual layers.

Servlets that extend HttpServlet can be accessed using a Web browser by
making POST and GET requests. These processing servlets are used to
handle interaction between end users and the business objects of the
e-commerce system. Users click on links and submit forms to add items to
their cart, recalculate cart quantities, submit order information, and finalize
their orders.

Web applications can also define servlets that extend GenericServlet (or
even implement Servlet directly). These servlets can be constructed as
service servlets, providing access to a set of facilities for use within the Web
application. These services can be used either by other services or by
processing servlets. One specific use for these services is to mediate the
interactions between the processing servlets and business object persistence
mechanisms.
Servlet design patterns for e-commerce 185

For example, a ProductFactory service could perform product searches and
return a Vector of Product objects to the caller. This ProductFactory could be
used both by a Search processing servlet that was performing searches and
displaying the results to HTML through a JSP page. An XMLProductGateway
processing servlet that was used to send out product information in
structured fashion could also use this ProductFactory. The
XMLProductGateway servlet would receive a request for XML product
structures, make a request to the ProductFactory, receive the product
business objects and then reformat them into XML format to be returned to
the caller. In this way the conversion of database tables and rows into the
business objects of the online application is centralized and leveraged across
multiple client components.

Figure 94. Tiered architecture topology

Service servlets act as intermediaries between the Web application and other
systems, such as relational databases. They can also encapsulate shared
business logic processing (see Figure 94).

GenericServlet

MyServiceServlet

HttpServlet

MyProcessingServlet
186 Linux for WebSphere and DB2 Servers

Figure 95. Example of the tiered architecture

ProductFactory is a GenericServlet subclass that handles database to
Product object mappings, and the business logic associated with retrieving
products. AddItem and Search are both HttpServlet subclasses that act as
clients to ProductFactory, leveraging its Product generation infrastructure
(see Figure 95).

In addition to providing reuse, these service servlets help componentize
development, resulting in flexible and extensible systems. For example, the
FinalizeOrder processing servlet needs to perform a number of tasks; it must
calculate taxation and shipping information, verify that the resulting order
object is valid, and persist it to a data store. If all of this functionality is tied up
within the FinalizeOrder processing servlet, it will be rather brittle and subject
to repeated changes as the application evolves. However, if its functionality is
broken out into a group of services, these components can be updated and

GenericServlet

HttpServlet

AddItem Search

ProductFactory

+retrieveProductSet(params : Hashtable) : Vector<Product>
+retrieveProduct(itemid : String) : Product
Servlet design patterns for e-commerce 187

replaced separately. Creating TaxCalculator and ShippingCalculator servlets
and an OrderManager servlet both componentizes this functionality and
makes it available across the application using the
ServletContext.getServlet(String) component lookup method. The tax and
shipping calculations can be reused in the shopping portion of the application
to display initial values, and the order persisting service can be connected to
an XML order gateway or other remote order generation facilities.

9.2.3 Separation of processing and display responsibilities
Server-side scripting systems such as ASP tend to place all code into the
same location; processing code and display code are placed together. This
can be convenient for small development projects, but for larger efforts where
maintainability and extensibility are key factors this model can be
cumbersome. Using the servlet API in conjunction with JavaServer Pages
allows for the construction of Web-based applications that separate
processing and display. Servlets accept HTTP requests and manipulate the
business objects of the system and then defer display of the results to a
separate body of code. The system business objects are the common
currency used in both areas.

JSP pages should generally not have side effects. They should be used to
show, not to do. If more sophisticated handling for objects is required,
encapsulate the manipulation in a servlet and defer the display to a JSP
page.

9.3 Specialized applications

We now discuss specialized applications.

9.3.1 Personalization
After a user session has been identified, servlets can be used to serve
client-specific logos and preferences. By creating resource bundles
containing information such as small logo image, large logo image, company
name, and background color, a central servlet could then be used to serve
out client-specific resources based on the request. Because servlets are not
restricted to only serving out HTML these resources can make up a fairly
significant portion of the display generation. This can be accomplished using
Java Server-Side Includes to generate an tag pointing to the
appropriate image by placing <SERVLET> tags into HTML files:

<SERVLET CODE=com.atension.servlet.personalization.SmallImage>
188 Linux for WebSphere and DB2 Servers

</SERVLET>

or using a servlet reference in the HTML file to serve out the image data itself:

Requests to this servlet will serve out content of the type image/gif or
image/jpeg. Information in the user's session can be used to determine which
images should be served in given cases.

9.3.2 Asynchronous event processing using threads
Generally, all events during an e-commerce user's shopping experience are
handled synchronously, completely finishing one task before moving on to
another. However, there are a number of situations where asynchronous
processing might offer certain advantages. An excellent example is that of
sites providing real-time credit card validation. Credit card validation requires
a number of steps that can work across a number of hosts on the Internet and
other networks. Because of the communication requirements, real-time credit
card validation can be a slow process. A number of sites post disclaimers
around links to order finalization routines warning the user that the
transaction could last for quite some time and that repeatedly clicking on
buttons or links can cause credit cards to be charged multiple times. Though
having these disclaimers is probably better than leaving the unsuspecting
user without warning, the overall quality of the application suffers due to its
inability to work in what the shopper will perceive as real time.

Another approach would be to use Java's integrated threading mechanisms to
cause time-consuming events to be handled asynchronously. A credit card
processing servlet could maintain a pool of threads that run authorizations for
credit card transactions. When a shopper attempts to finalize an order
requiring credit card authorization, this authorization is queued and left to a
persistent thread to handle. The user's shopping experience continues as if
everything has succeeded (because as a general rule this process will be
successful). If the transaction should happen to fail, the e-commerce
application would be notified of the failure. If the user were still online, a
message could be delivered during the session. If the shopper has already
moved on, the order could be held back from fulfillment, and the user could
be notified using e-mail. Though this will undoubtedly cause some confusion
for customers who were declined, this will most likely be the case for all
customers who have transactions fail, regardless of whether they were
processed synchronously or asynchronously. The performance increases
should be significant.
Servlet design patterns for e-commerce 189

9.3.3 Utilizing an e-commerce event model
The servlet API has some limited event model support already built in. The
SessionBindingEvent and SessionUnbindingEvent callback facilities provide
the developer with the capability to execute code based on system activities.
These event handlers can be especially useful for e-commerce applications.
SessionBindingEvents can be used to associate sessions with global,
persistent repeat user data. SessionUnbindingEvents can be used to release
inventory associated with a user's cart back into the available pool.

In addition, extending this event model to handle more business-logic specific
functions can greatly increase the usability and extensibility of e-commerce
applications. InventoryEvents could be fired by servlets that add items to the
user's cart or recalculate the quantities. These could be handled by facilities
that would maintain a count of the available product levels. OrderFinalized
events could be used to trigger customer-service e-mails and other back-end
integration utilities. CheckoutFailure events could be used to log and analyze
site usability, identifying bottlenecks.

One rather useful application of this technique can be found in logging and
application tracking. There are a number approaches logging for e-commerce
applications, and the specific policy applied depends on a number of factors.
During development, it is important to log the status of the system and
metrics on system performance to help the team building the site verify its
progress. After the site has been taken live, the majority of this debugging
logging activity should be removed to enhance performance. However,
additional logging can be added to the system that will track user activities
and provide valuable demographic and usage data. If a user comes to the site
by way of a specialized link, a SessionReferred event could be fired, and that
logged and correlated with subsequent AddItem and OrderFinalized events.
This type of analysis is invaluable for companies deploying e-commerce
solutions because it provides metrics for the evaluation of site performance
and chart future development goals.

Another option is to embed plug-ins in all servlets where extensible
functionality is required. When a servlet gets to a given point in processing, it
scrolls through a Vector of these handlers that would seemingly provide the
same functionality as event handlers. However, these plug-ins would be
configured as part of the servlet, extending its functionality. Event handlers
are configured separately from the servlets generating the events, making
them more flexible and leveragable. Hybrid cases might also be useful.
190 Linux for WebSphere and DB2 Servers

9.3.4 Leveraging the HTTP protocol in servlet-based applications
The servlet API's access to server and HTTP protocol information allows Web
applications access to a robust set of primitives in addition to servlet-specific
facilities. Servlets can access information such as IP addresses and HTTP
headers. While it is possible to create new login facilities and other services
within the context of the e-commerce system, leveraging this existing
infrastructure for online applications has the potential to decrease
development time and increase maintainability. Utilizing HTTP logins also
allows for better interoperability with legacy CGI applications executing on the
same server and existing resource protection done using .htaccess files.

One potential use for integrating servlet applications with the HTTP protocol
would be in enhancing security. A user's session for an online broker could be
associated both with an HTTP authorization name and the accessing IP
address. This significantly decreases the chances that malicious third parties
could hijack sessions. Moving this inspection across sessions allows for the
analysis of usage patterns: where does a particular customer access this
Web application?, how often does her or she travel?, etc. This allows not just
for demographic analysis, but also for fraud-detection for paid content
providers and other account-based e-business systems.

9.3.5 Structuring parameter names and values
The naming and usage of request parameters can be used to create a
number of different access methods. Servlet requests allow for two different
access methods: direct requests based on a key, and a request for available
keys. The most common access method is by key; if a developer wants to
know what color a user specified, HttpRequest.getParameter (String) is used
to query the available parameters. However, the
HttpServletRequest.getParameterNames (String) method also allows the
developer to work through an array of all available parameters.

When a user is attempting to update the quantities in the shopping cart and
each item in the cart can be referenced by a unique key, using a prefix such
as qty_ for the names of all parameters indicating new quantities for a given
key allows the developer to search through all available parameters, find
those whose name starts with the string qty_, and update the cart's quantities
based on the value of that parameter. A similar technique could be used for
items that should be removed outright from the cart, perhaps prefixing those
parameter names with del_. This allows both operations to occur concurrently
through the same request while decreasing the possibility of name collisions
or problems if additional functionality is added at a later date. Similar
Servlet design patterns for e-commerce 191

techniques could be used for workflow applications where a number of similar
items are submitted and must be maintained.

9.3.6 Non-cookie-based state maintenance
As a general rule, state maintenance for Web applications is accomplished
through the use of browser cookies. Servlet chaining can be used to provide
additional state maintenance facilities on top of the standard servlet engine
behavior. Most servlet engines handle state maintenance by automatically
using browser cookies or requiring manual rewriting of URLs output by
servlets using the HttpServletResponse.encodeUrl (String) method. This can
be cumbersome for servlet developers who would rather use either HTML
object libraries or JSP to generate dynamic HTML. In addition, the user state
would be lost when browsing through .html or .htm files if cookie-based
session tracking were disallowed due to browser incompatibility or by passing
through firewalls that strip such headers. Rather than depend upon cookies
for these applications, it is also possible to maintain a state in a browser and
firewall-independent manner using URL rewriting.

A state maintaining parser servlet can be set to handle requests for all
text/html MIME type output before ultimately being returned to the client
browser. This parser servlet would copy all HTTP headers from its request
(the response of the previous servlet or the HTML page being returned) and
parse through the HTML being returned to the user, rewriting all appropriate
tags such as <A>, <AREA>, <FRAME>, and inserting hidden <FORM>
variables.

9.3.7 Servlet-based cron facility
Another useful facility stemming from the ability of Java servlets to spawn off
independent threads of execution is the ability to set up scheduled events
within the Java VM. Similar to the UNIX cron facility, a system timer thread
could be used to perform a variety of polling, execution, and analysis
functions in the background.

This immediately raises the question, "Why not use the existing operating
system scheduling facilities?" The primary reason for moving this
responsibility in-process for Web-based applications is the ability to centralize
the administration of Web application maintenance tasks and maintain control
over event synchronization.

Having the system event scheduling inside the Java VM allows for simple
Web-based administration tools for event scheduling that is integrated with
the rest of the application's administration tools and accessible from
192 Linux for WebSphere and DB2 Servers

throughout the Web application. While it is possible to create gateways to the
VM's processing using RMI or servlet gateways (as in the XML data transfer
example), there is value in the integration.

Also, holding system maintenance events within the Java VM allows
developers to leverage Java's built-in synchronization primitives. Web
applications tend to have a variety of internal caches and object stores that
are directly accessible from inside the VM, and maintenance tasks tend to
affect these objects. Having administration inprocess allows easy access and
fine-grained control so that performance and correctness can be maintained.
For example, if an e-commerce site caches Product objects in an internal
data structure, using the database only for searching, and the database
needs massive uploads and changes on a nightly basis, if these maintenance
tasks are handled from within the Java process the object cache can be kept
in sync with changes to the database as they are made, without creating any
gateway facilities that allow for out of process communication. Also, if an
e-commerce site communicated with backend fulfillment systems on a batch
basis and maintains a single batch file of orders for a day's transactions, all
access to the contents of the file can be controlled through the VM without
relying on operating system-dependent file locking mechanisms. New orders
can be added and batches can be rolled over without fear of race conditions
or inconsistent states.

9.3.8 Dynamically generated images
It is possible to use Java's imaging capabilities and third-party libraries to
dynamically generate images on the server side. These images are retrieved
by way of an image-serving servlet. Examples of Java-based image
manipulation can be seen on the Range Rover Web site
(http://www.landrover.com), where an applet-based configuration tool allows
the user to select truck body styles and colors, wheels, and accessories. This
does an excellent job of showcasing their product, but it is rather slow and
makes significant requirements on client browsers to support the application.
The same functionality could be encapsulated in a server-side application
that would use request parameters and cookies to configure a GIF or JPEG
image served back to the user:

This architecture allows for very exciting e-commerce shopping applications.
A page or series of pages could be created allowing a shopper to view
different styles for shirts, pants, and shoes. These could be mixed in any
combination. Traditionally, these types of applications have been done using
extensive client-side scripting and programming, placing the requirement of
Servlet design patterns for e-commerce 193

compatibility upon the shopper client rather than the server. Server-side
images that are dynamically generated remove these responsibilities from the
comparatively fragile client environment and place them onto the more
predictable, stable server.

This approach is most useful for cases where there is a large enough quantity
of images requiring the same dynamic modification before being served back
to the user. With small quantities and/or fixed modifications that must be
made, it makes sense to cache all the available permutations with actual files
in the file system. However, if there is a large quantity of images that must be
altered, and if the alterations either change over time or are specific to the
individual viewer, dynamic generation (with perhaps some object or file-based
caching) can greatly increase the simplicity and maintainability of the system.

9.3.9 HTML components to aid in JSP processing
JSP leverages the power of Java to create a flexible server-side scripting
language for generating dynamic HTML. However, there are certain repetitive
tasks when generating HTML that can be cumbersome and result in cluttered
JSP pages. By using HTML generation component objects some of these
repetitive tasks can be encapsulated, resulting in cleaner JSP code that is
easier to understand and maintain.

An excellent example of the use of this technique can be found when trying to
output HTML <SELECT> boxes that should be filled in with the current month
value. Although there may be other approaches, writing pure JSP code to
handle this problem could look something like this:

<SELECT name="yearbox" value="year">

<OPTION value="2000"<% if("2000".equals(str) out.print(" SELECTED");%>>2000

<OPTION value="2001"<% if("2001".equals(str) out.print(" SELECTED");%>>2001

<OPTION value="2002"<% if("2002".equals(str) out.print(" SELECTED");%>>2002

<OPTION value="2003"<% if("2003".equals(str) out.print(" SELECTED");%>>2003

<OPTION value="2004"<% if("2004".equals(str) out.print(" SELECTED");%>>2004

<OPTION value="2005"<% if("2005".equals(str) out.print(" SELECTED");%>>2005

<OPTION value="2006"<% if("2006".equals(str) out.print(" SELECTED");%>>2006

<OPTION value="2007"<% if("2007".equals(str) out.print(" SELECTED");%>>2007

<OPTION value="2008"<% if("2008".equals(str) out.print(" SELECTED");%>>2008
194 Linux for WebSphere and DB2 Servers

<OPTION value="2009"<% if("2009".equals(str) out.print(" SELECTED");%>>2009

</SELECT>

However, it is possible to create a component that would encapsulate all of
this decision logic. Usage of such a component could look like this:

<%

YearBox yb = new YearBox (2000, 2009);

yb.setSelected (str);

yb.streamTo (out);

%>

The code utilizing the component is much cleaner and simpler. These
components could also potentially build up code to increase performance by
reducing string comparisons or other operations associated with the
pure-JSP implementation. In addition, it would be possible to generalize the
behavior of the <SELECT> box into a base class to be extended for specific
cases such as this. This is an excellent scenario because <SELECT> boxes
are fairly standard to display. Trying to extend this technique past simple
examples can tend to generate Java code that is just as complicated as the
HTML to be generated, but the benefits gained from simple applications are
significant. There are a number of freely available toolkits that can be used for
generating HTML, or as in this case it is fairly simple to create a robust toolkit
of reusable components.

9.3.10 Summary
E-commerce applications present a number of challenges to architects and
developers. By applying several simple architectural patterns, and exploiting
the power and flexibility of the servlet API developers can construct robust,
scalable, and flexible Web applications. Also, the power of the Java language
and associated APIs provide a rich base for extending Web application
functionality.
Servlet design patterns for e-commerce 195

196 Linux for WebSphere and DB2 Servers

Part 4. DB2 Universal Database

Part four discusses different methods of accessing a DB2 database.
© Copyright IBM Corp. 1999 197

198 Linux for WebSphere and DB2 Servers

Chapter 10. Accessing DB2 data

As well as providing a relational database to store your data, DB2 lets you
issue requests to administer, query, update, insert, or delete data (among
other functions) using local or remote client applications. An application can
access DB2 data over the Web or over a LAN connection. This data can
reside on host, nonhost, or AS/400 machines that are running DB2 or a select
number of the world’s most popular database management systems.

The focus of this book is accessing DB2 data over the Web. However, this
chapter will briefly look at the different database access methodologies that
DB2 offers and the most common implementations. This chapter will first lay
down the foundation of database access and then build on these examples to
create an e-commerce solution over the Web.

DB2 clients provide a run-time environment that enables client applications to
access one or more remote databases. With a DB2 Administration Client, you
can remotely administer a DB2 server. Local applications, and all Java
applications (either local or remote), access a DB2 database through a DB2
client. All remote applications that are not Java applets must have a DB2
client installed on the machine before they can access a DB2 database. A
DB2 client is part of any DB2 server installation. For more information on DB2
clients, refer to the DB2 documentation.

DB2 Version 6.1 clients are supported on the following platforms:

• Windows NT, Windows 95, and Windows 98

• UNIX (AIX, HP-UX, Linux, SGI IRIX, and Solaris

• OS/2

Pre-Version 6.1 DB2 Clients for the following platforms are available for
download from the Web:

• DOS

• Macintosh

• SCO Open Server and SCO UnixWare 7

• SINIX

• Windows 3.x

To obtain these client, connect to the IBM DB2 Clients Web site at:
www.software.ibm.com/data/db2/db2tech/clientpak.html.
Accessing DB2 data 199

10.1 Accessing DB2 data from remote clients over a LAN connection

The following diagram shows a server that is being accessed by local and
remote applications. Remote applications must have the appropriate DB2
client installed to access data on the remote servers:

Figure 96. Remote client control

In this example, database access is not via JDBC or a Web connection. This
example illustrates your typical connection scheme in an office. This method
of access would not be suitable for e-commerce, since all of your customers
would have to have a DB2 Client.

10.2 Accessing host or AS/400 DB2 data over a LAN connection

A DB2 server with the DB2 Connect Server Support feature installed enables
DB2 clients on a LAN access to data that is stored on host or AS/400
systems. The DB2 Connect Server Support feature is part of DB2 Enterprise
Edition.

DB2 Universal Database - Remote Client Support

DB2 Run-Time
Client

DB2 Administration
Client

Communication Support
for Server

TCP/IP

A
p

p
lic

a
tio

n
1

A
p

p
lic

a
tio

n
2

A
p

pl
ic

a
tio

n
n

DB2 Universal Database

. . .
200 Linux for WebSphere and DB2 Servers

Applications are provided with transparent access to host or AS/400 data
through a standard architecture for managing distributed data. This standard
is known as Distributed Relational Database Architecture (DRDA). Use of
DRDA allows your applications to establish a fast connection to host and
AS/400 databases without expensive host components or proprietary
gateways.

A great deal of the data in many large organizations is managed by DB2 for
AS/400, DB2 for MVS, DB2 for OS/390, or DB2 for VM. Applications that run
on any of the supported platforms can work with this data transparently, as if
a local database server managed it.

In addition, you can use a wide range of off-the-shelf or custom-developed
database applications with DB2 and its associated tools. For example, you
can use DB2 products with:

• Spreadsheets, such as Lotus 1-2-3 and Microsoft Excel, to analyze
real-time data without having the cost and complexity of data extract
and import procedures.

• Decision support tools, such as Business Objects, Cognos, and Crystal
Reports, to provide real-time information.

• Database products, such as Lotus Approach and Microsoft Access.

• Development tools, such as PowerSoft PowerBuilder, Microsoft Visual
Basic, and Borland Delphi, to create client/server solutions.

Figure 97 on page 202 shows a server that is being accessed by local and
remote applications. These applications are accessing DB2 data from host
and non-host DB2 servers.
Accessing DB2 data 201

Figure 97. Accessing DB2 data from host and non-host DB2 servers

In this example, database access is not via JDBC or a Web connection. This
example illustrates your typical connection scheme in an office that needs
access to data residing on host or AS/400 machines. This builds upon the
previous example in the sense that the DB2 data sources are also on host or
AS/400 machines. Though the access method did not change, the breadth of
data access did. This is a typical scenario for many large organizations. This
method gives us access to a broader range of DB2 data. However, it would
not be suitable for e-commerce since all of your customers would have to
have a DB2 Client.
202 Linux for WebSphere and DB2 Servers

This example could be widened to include some of the world’s leading
database management systems, for example, Oracle. You can access
heterogeneous data sources using DataJoiner. For more information, refer to
your DB2 documentation.

10.3 Accessing DB2 data from the Web using java

Java Database Connectivity (JDBC) and Embedded SQL for Java (SQLJ) are
provided with DB2 to allow you to create applications that access data in DB2
databases from the Web.

Programming languages containing embedded SQL are called host
languages. Java differs from the traditional host languages C, COBOL, and
FORTRAN, in ways that significantly affect how it embeds SQL:

• SQLJ and JDBC are open standards, enabling you to easily port SQLJ
or JDBC applications from other standards-compliant database
systems to DB2.

• All Java types representing composite data, and data of varying sizes,
have a distinguished value, null, which can be used to represent the
SQL NULL state. This gives Java programs an alternative to NULL
indicators that are a fixture of other host languages.

• Java is designed to support programs that, by nature, are
heterogeneously portable (also called "super portable" or simply
"downloadable"). Along with Java's type system of classes and
interfaces, this feature enables component software. In particular, an
SQLJ translator written in Java can call components that are
specialized by database vendors in order to leverage existing database
functions such as authorization, schema checking, type checking,
transactional, and recovery capabilities, and to generate code
optimized for specific databases.

• Java is designed for binary portability in heterogeneous networks,
which promises to enable binary portability for database applications
that use static SQL. You can run JDBC applets inside a Web page on
any system with a Java-enabled browser, regardless of the platform of
your client. Your client system requires no additional software beyond
this browser. The client and the server share the processing of JDBC
and SQLJ applets and applications.

The JDBC server and the DB2 client must reside on the same machine as the
Web server; remember, DB2 server is installed with a DB2 client. The JDBC
server calls the DB2 client to connect to a local, remote, host, or AS/400
Accessing DB2 data 203

databases. When the applet requests a connection to a DB2 database, the
JDBC client opens a TCP/IP connection to the JDBC server on the machine
where the WebSphere is running.

Figure 98 is an example of a Java-enabled browser accessing data from
remote DB2 databases. This scenario is considered a two-tier configuration
because the DB2 server and WebSphere reside on the same machine. In this
scenario, the bundled DB2 client on the DB2 server is being used.

Figure 98. Accessing a two-tier configuration

In this scenario, the DB2 Server and the WebSphere server must reside on
the same machine.

This same connection could also be accomplished using a three-tier
configuration as in Figure 99 on page 205.
204 Linux for WebSphere and DB2 Servers

Figure 99. Accessing a three-tier configuration

In this scenario, the DB2 client and the WebSphere server must reside on the
same machine, but the DB2 server resides on another tier. To install a DB2
client, refer to your DB2 documentation.

You can use JDBC to create applications that are stored on a WebSphere
server and viewable from any Web browser, despite the operating system on
which it is running. While viewing HTML documents, users can select
automated queries or define new ones that retrieve specified information
directly from a DB2 database.

Automated queries do not require input; they are links in an HTML document
and, when selected, trigger existing SQL queries and return the results from a
DB2 database. These links can be triggered repeatedly to access current
DB2 data. Customized queries require user input. Users define the search
characteristics on the Web page by selecting options from a list or by entering
values in fields. They submit the search by clicking on a push button and the
Accessing DB2 data 205

dynamic SQL statement is generated and sent to the DB2 server for
processing.

These are the most typical configurations for e-commerce solutions. Users
from around the world can access your applications over the Web. The user
could fill out forms that would then be converted to SQL and used to search a
product database. If the product is in stock, the user could order it over the
Web and the vendor’s inventories would be update automatically.

The sample scenarios in this book focus on a two-tier or three-tier JDBC
configuration. For more information on these samples, see "Sample Java
JDBC programs" on page 209, "Sample servlets without ConnMgr" on page
225 and "Sample servlets using ConnMgr" on page 245.

For more information on Java enablement, refer to the DB2 Java Enablement
Web page at http://www.software.ibm.com/data/db2/java/. For more
information on the JDBC API, point your browser to
http://splash.javasoft.com/.
206 Linux for WebSphere and DB2 Servers

Part 5. Sample Scenarios

This part provides a series of samples that will help you to better understand
the applications we are working with in this book.
© Copyright IBM Corp. 1999 207

208 Linux for WebSphere and DB2 Servers

Chapter 11. Sample Java JDBC programs

This chapter contains two sample stand-alone Java JDBC programs that will
assist you in testing both local and remote JDBC access to a DB2 instance.
The programs are largely self-explanatory. Also included is a copy of the
“javaprofile” file that we used to establish access to the needed Java classes
for compiling both the stand-alone programs and our Java servlets. You can
compile and run both these programs. The full source code is listed here.

The output from running the first program, DB2appProgram1.java, is shown in
Figure 100 (in this sample there is no typed input as the pre-programmed
defaults were taken on each input line). The program asks the user to enter a
database name followed by the user ID then the password. If a connection
can be made using the input information provided, the program then
responds with a prompt >. The user can then type in an SQL query such as:

select * from org

To execute a typed-in query, the user types in go at the next prompt and the
query is then executed. The programs will continue to run until the user types
in the keyword quit. The advantage of these stand-alone programs is that you
can validate both local and net access to your DB2 instance in advance of
testing a connection through servlets and WebSphere.

Figure 100. Sample run of program DB2appProgram1.java
Sample Java JDBC programs 209

This second program DB2netProgram1.java (Figure 101) runs just like the
first program but uses the net driver instead, which allows access to remote
databases connected via TCP/IP. The only typed-in difference is the URL,
which in this program must include the type of connection, the subtype, the
host computer, and the port that the db2jstrt command was started with.

For example, let’s assume you have started DB2 on your server by logging
into your db2instance and running db2start, and then you started the TCP/IP
jdbc interface using the db2jstrt <port> command, as follows:

db2jstrt 8083

You should then have DB2 running and waiting for remote connections on
port 8083. If our server had an Internet IP address of dbserver1.ibm.com and
we wanted to query a table in the sample database, we would enter the URL:

jdbc:db2://dbserver1.ibm.com:8083/sample

Figure 101. Sample run of program DB2netProgram1.java

We have also included the db2profile script we used when we wanted to run
the programs. The DB2 profile was copied from our db2inst1 account after we
had installed DB2.

In setting up your javaprofile and db2profile, you will need to create your own
profiles with your own directory path names. Ours are just a guide. The
profiles should be in your home directory and run using the source command
as follows:
210 Linux for WebSphere and DB2 Servers

source javaprofile

source db2profile

Once the profiles are set you can compile Java programs and servlets as well
as run the Java programs.

11.1 Script of javaprofile

Figure 102. Sample javaprofile file used in our project

A javaprofile is needed so you can establish access to the various Java zip
and jar files needed to compile both Java programs and Java servlets.

As you can see in Figure 102, we have included a CLASSPATH pointer to the
DB2 db2java.zip file that is needed for loading the jdbc app or net driver,
depending on which program you run.

There are many ways you can establish access to your Java classes. We
think that running the above script using the source command is a simple and
tidy way of keeping track of CLASSPATH variables within your own login
account.

DB2INSTANCE=db2inst1
JAVA_HOME=/usr/lib/jdk116
PATH=$PATH:$JAVA_HOME/bin

CLASSPATH=$CLASSPATH:.
CLASSPATH=$CLASSPATH:/opt/IBMWebAS/lib/ibmjndi.jar
CLASSPATH=$CLASSPATH:/opt/IBMWebAS/lib/jst.jar
CLASSPATH=$CLASSPATH:/opt/IBMWebAS/lib/xml4j.jar
CLASSPATH=$CLASSPATH:/opt/IBMWebAS/lib/jsdk.jar
CLASSPATH=$CLASSPATH:/opt/IBMWebAS/lib/ejsclientruntime.jar
CLASSPATH=$CLASSPATH:/opt/IBMWebAS/lib/x509v1.jar
CLASSPATH=$CLASSPATH:/opt/IBMWebAS/lib/ibmwebas.jar
CLASSPATH=$CLASSPATH:/opt/IBMWebAS/lib/databeans.jar
CLASSPATH=$CLASSPATH:/opt/IBMWebAS/lib/lotusxsl.jar
CLASSPATH=$CLASSPATH:/opt/IBMWebAS/lib/jndi.jar

CLASSPATH=$CLASSPATH:/home/doug/dsm_apps:/home/doug/dsm_servlets
CLASSPATH=$CLASSPATH:/usr/IBMdb2/V6.1/java/db2java.zip

export CLASSPATH JAVA_HOME PATH DB2INSTANCE
Sample Java JDBC programs 211

11.2 Script of db2profile

Figure 103. Sample db2profile as used in our project (part 1 of 2)

###
#
NAME: db2profile
#
FUNCTION: This script sets up a default database environment for
Bourne shell or Korn shell users.
#
USAGE: . db2profile
This script can either be invoked directly as above or
it can be added to the user's .profile file so that the
database environment is established during login.
A user may also copy this script into their directory
structure and customize it.
#
###

Default DB2 product directory
DB2DIR="/usr/IBMdb2/V6.1"

#---
DB2INSTANCE [Default null, values: Any valid instance name]
Specifies the instance that is active by default.
#---
DB2INSTANCE=db2inst1
export DB2INSTANCE

INSTHOME=/home/db2inst1

#---
First remove any sqllib entries from the user's path.
Add the directories:
INSTHOME/sqllib/bin - database executables
INSTHOME/sqllib/adm - sysadm executables
INSTHOME/sqllib/misc - miscellaneous utilities
to the user's PATH.
#---

PATH=`echo ${PATH}: | sed \
-e "s/:[:̂]*sqllib\/bin[̂ :]*:/:/" \
-e "s/:[:̂]*sqllib\/adm[̂ :]*:/:/" \
-e "s/:[:̂]*sqllib\/misc[^:]*:/:/" \
-e "s/\(.*\):$/\1/"`

PATH=${PATH}:${INSTHOME}/sqllib/bin:${INSTHOME}/sqllib/adm
PATH=${PATH}:${INSTHOME}/sqllib/misc
export PATH
212 Linux for WebSphere and DB2 Servers

Figure 104. Sample db2profile as used in our project (part 2 of 2)

The db2profile you use should be the same as the one generated by DB2 and
placed in the home directory of your db2instance at the time you did the DB2
install.

If you try to run program DB2appProgram1.java without first setting the
needed DB2 environment variables, you will get error messages indicating
the program was not able to find a suitable driver.

You may also notice that we have doubled up in setting some of the
environment variables as shown in both the javaprofile and db2profile scripts.
This is because there are times when you may only need one or the other
script such as if you are only running DB2 and not doing any Java compiles.

#---
UDB Extender initialization
#---
if [-f ${INSTHOME}/dmb/dmbprofile]; then

. ${INSTHOME}/dmb/dmbprofile
fi

#---
The following variables are used for JDBC support
#---
#---
Only add sqlj.zip if SDK is installed
#---
CLASSPATH=${CLASSPATH:-""}

if [-f ${INSTHOME}/sqllib/java/sqlj.zip]; then
CLASSPATH=$CLASSPATH:${INSTHOME}/sqllib/java/sqlj.zip

fi

CLASSPATH=$CLASSPATH:${INSTHOME}/sqllib/java/db2java.zip
CLASSPATH=$CLASSPATH:${INSTHOME}/sqllib/java/runtime.zip:.
export CLASSPATH

LD_LIBRARY_PATH=${LD_LIBRARY_PATH:-""}
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${INSTHOME}/sqllib/lib
export LD_LIBRARY_PATH

If you do not have the DB2 environment variable DB2INSTANCE set, you
will get errors running programs that access DB2 on the same computer.

Note
Sample Java JDBC programs 213

11.3 Java program DB2appProgram1.java

The following figures show the source code for DB2appProgram1.java. The
code has been broken up but grouped into windows to keep an orderly and
readable flow to the logic.

Figure 105. Sample program DB2appProgram1.java (part 1 of 5)

/**
* @(#)DB2appProgram1.java 5.0 99/07/01
*
*/
import java.sql.*;
import java.io.*;
import java.util.*;

public class DB2appProgram1 {

static DataInputStream kbd = new DataInputStream(System.in);

static String url = "jdbc:db2:SAMPLE";
static String driver = "COM.ibm.db2.jdbc.app.DB2Driver";
static String login = "db2inst1";
static String passwd = "linux0";

static Connection curConn = null;

// **
// * Main Method
// **

public static void main(String argv[]) throws IOException
{

String temp = "";

System.out.println("SAMPLE DB2 ACCESS (app driver).\n");
System.out.print("Enter the url or [ENTER] for " + url + " : ");
System.out.flush();
temp = kbd.readLine();
if (!temp.equals("")) url = temp;
System.out.print("Enter the login or [ENTER] for " + login + " : ");
System.out.flush();
temp = kbd.readLine();
if (!temp.equals("")) login = temp;
System.out.print("Enter the passwd or [ENTER] for default : ");
System.out.flush();
temp = kbd.readLine();
if (!temp.equals("")) passwd = temp;

DB2appProgram1 session = new DB2appProgram1();
}

214 Linux for WebSphere and DB2 Servers

Figure 106. Sample Program DB2appProgram1.java (part 2 of 5).

// **
// * DB2appProgram1 Method
// **

public DB2appProgram1() throws IOException
{

try {
Class.forName(driver);
curConn = DriverManager.getConnection(url, login, passwd);
checkForWarnings(curConn.getWarnings ());

}
catch(java.lang.Exception ex) {

System.out.println("url : " + url);
System.out.println("login : " + login);
System.out.println("passwd : " + passwd);
ex.printStackTrace();
return;

}
prepareQueries();
finalize();

}

// **
// * finalize Method
// **

protected void finalize()
{

try {
curConn.close();

}
catch (SQLException ex) { }

}

Sample Java JDBC programs 215

Figure 107. Sample program DB2appProgram1.java (part 3 of 5)

// **
// * prepareQueries Method
// **

private void prepareQueries() throws IOException
{

int i = 1;
String temp = "";
String query = "";
String results = "";

System.out.println("Type 'quit' on a blank line to exit, or 'go' to execute the query.");
do {

System.out.print(i + "> ");
System.out.flush();
temp = kbd.readLine();
if (temp.equals("quit"))

break;
if (temp.equals("go")) {

performQuery(query);
i = 1;
query = "";

}
else {

query = query + " " + temp;
i++;

}
} while (0 == 0);

}

216 Linux for WebSphere and DB2 Servers

Figure 108. Sample program DB2appProgram1.java (part 4 of 5)

// **
// * performQuery Method
// **

private void performQuery(String sqlText) {
boolean resultSetIsAvailable;
boolean moreResultsAvailable;
int i = 0;
int res=0;
try {

Statement curStmt = curConn.createStatement();
resultSetIsAvailable = curStmt.execute(sqlText);
ResultSet rs = null;
for (moreResultsAvailable = true; moreResultsAvailable;) {

checkForWarnings(curConn.getWarnings());
if (resultSetIsAvailable) {

if ((rs = curStmt.getResultSet()) != null) {
// we have a resultset
checkForWarnings(curStmt.getWarnings());
ResultSetMetaData rsmd = rs.getMetaData();
int numCols = rsmd.getColumnCount();
// display column headers
for (i = 1; i <= numCols; i++) {

if (i > 1) System.out.print(", ");
System.out.print(rsmd.getColumnLabel(i));

}
System.out.println("");
// step through the rows
while (rs.next()) {

// process the columns
for (i = 1; i <= numCols; i++) {

if (i > 1) System.out.print(", ");
System.out.print(rs.getString(i));

}
System.out.println("");

}
}

}
else {

if ((res = curStmt.getUpdateCount()) != -1) {
// we have an updatecount
System.out.println(res + " row(s) affected.");

}
// else no more results
else {

moreResultsAvailable = false;
}

}
if (moreResultsAvailable) {

resultSetIsAvailable = curStmt.getMoreResults();
}

}
if (rs != null) rs.close();
curStmt.close();

}

Sample Java JDBC programs 217

Figure 109. Sample program DB2appProgram1.java (part 5 of 5)

catch (SQLException ex) {
// Unexpected SQL exception.
ex.printStackTrace ();

}
catch (java.lang.Exception ex) {

// Got some other type of exception. Dump it.
ex.printStackTrace ();

}
}

// **
// * checkForWarnings Method
// **

private static void checkForWarnings (SQLWarning warn)
throws SQLException

{
while (warn != null) {

System.out.println(warn);
warn = warn.getNextWarning();

}
}

}

218 Linux for WebSphere and DB2 Servers

11.4 Java program DB2netProgram1.java

The next set of figures show the source code for DB2netProgram1.java. It
differs from DB2appProgram1.java only in that it uses the net driver for
TCP/IP access, instead of the app driver that uses direct access.

Figure 110. Sample program DB2netProgram1.java (part 1 of 5)

/**
* @(#)DB2netProgram1.java 5.0 99/07/01
*
*/
import java.sql.*;
import java.io.*;
import java.util.*;

public class DB2netProgram1 {

static DataInputStream kbd = new DataInputStream(System.in);

static String url = "jdbc:db2://9.24.105.23:8083/SAMPLE";
static String driver = "COM.ibm.db2.jdbc.net.DB2Driver";
static String login = "db2inst1";
static String passwd = "linux0";

static Connection curConn = null;

// **
// * Main Method
// **

public static void main(String argv[]) throws IOException
{

String temp = "";

System.out.println("SAMPLE DB2 ACCESS (net driver).\n");
System.out.print("Enter the url or [ENTER] for " + url + " : ");
System.out.flush();
temp = kbd.readLine();
if (!temp.equals("")) url = temp;
System.out.print("Enter the login or [ENTER] for " + login + " : ");
System.out.flush();
temp = kbd.readLine();
if (!temp.equals("")) login = temp;
System.out.print("Enter the passwd or [ENTER] for default : ");
System.out.flush();
temp = kbd.readLine();
if (!temp.equals("")) passwd = temp;

DB2netProgram1 session = new DB2netProgram1();
}

Sample Java JDBC programs 219

Figure 111. Sample program DB2netProgram1.java (part 2 of 5)

// **
// * DB2netProgram1 Method
// **

public DB2netProgram1() throws IOException
{

try {
Class.forName(driver);
curConn = DriverManager.getConnection(url, login, passwd);
checkForWarnings(curConn.getWarnings ());

}
catch(java.lang.Exception ex) {

System.out.println("url : " + url);
System.out.println("login : " + login);
System.out.println("passwd : " + passwd);
ex.printStackTrace();
return;

}
prepareQueries();
finalize();

}

// **
// * finalize Method
// **

protected void finalize()
{

try {
curConn.close();

}
catch (SQLException ex) { }

}

220 Linux for WebSphere and DB2 Servers

Figure 112. Sample program DB2netProgram1.java (part 3 of 5)

// **
// * prepareQueries Method
// **

private void prepareQueries() throws IOException
{

int i = 1;
String temp = "";
String query = "";
String results = "";

System.out.println("Type 'quit' on a blank line to exit, or 'go' to execute the query.");
do {

System.out.print(i + "> ");
System.out.flush();
temp = kbd.readLine();
if (temp.equals("quit"))

break;
if (temp.equals("go")) {

performQuery(query);
i = 1;
query = "";

}
else {

query = query + " " + temp;
i++;

}
} while (0 == 0);

}

Sample Java JDBC programs 221

Figure 113. Sample Program DB2netProgram1.java (part 4 of 5).

// **
// * performQuery Method
// **

private void performQuery(String sqlText) {
boolean resultSetIsAvailable;
boolean moreResultsAvailable;
int i = 0;
int res=0;
try {

Statement curStmt = curConn.createStatement();
resultSetIsAvailable = curStmt.execute(sqlText);
ResultSet rs = null;
for (moreResultsAvailable = true; moreResultsAvailable;) {

checkForWarnings(curConn.getWarnings());
if (resultSetIsAvailable) {

if ((rs = curStmt.getResultSet()) != null) {
// we have a resultset
checkForWarnings(curStmt.getWarnings());
ResultSetMetaData rsmd = rs.getMetaData();
int numCols = rsmd.getColumnCount();
// display column headers
for (i = 1; i <= numCols; i++) {

if (i > 1) System.out.print(", ");
System.out.print(rsmd.getColumnLabel(i));

}
System.out.println("");
// step through the rows
while (rs.next()) {

// process the columns
for (i = 1; i <= numCols; i++)
{

if (i > 1) System.out.print(", ");
System.out.print(rs.getString(i));

}
System.out.println("");

}
}

}
else {

if ((res = curStmt.getUpdateCount()) != -1) {
// we have an updatecount
System.out.println(res + " row(s) affected.");

}
// else no more results
else {

moreResultsAvailable = false;
}

}
if (moreResultsAvailable) {

resultSetIsAvailable = curStmt.getMoreResults();
}

}
if (rs != null) rs.close();
curStmt.close();

}

222 Linux for WebSphere and DB2 Servers

Figure 114. Sample program DB2netProgram1.java (part 5 of 5)

catch (SQLException ex) {
// Unexpected SQL exception.
ex.printStackTrace ();

}
catch (java.lang.Exception ex) {

// Got some other type of exception. Dump it.
ex.printStackTrace ();

}
}

// **
// * checkForWarnings Method
// **

private static void checkForWarnings (SQLWarning warn)
throws SQLException

{
while (warn != null) {

System.out.println(warn);
warn = warn.getNextWarning();

}
}

}

Sample Java JDBC programs 223

224 Linux for WebSphere and DB2 Servers

Chapter 12. Sample servlets without ConnMgr

This chapter lists two JDBC servlet programs that will show you two different
ways of accessing DB2. Also, these programs do not use the Connection
Manager API but show how to connect to DB2 using database information
supplied by the client or from elsewhere. The first program uses the app
driver that makes direct connections to DB2. The driver’s full name is:

COM.ibm.jdbc.db2.app.DB2Driver

The above driver uses combined Java and native code. The second program
in this chapter uses an all-Java driver called:

COM.ibm.jdbc.db2.net.DB2Driver

This driver supports connections to remote DB2 databases using TCP/IP.
These are usually referred to as the app and net drivers.

These servlets make a new connection to DB2 each time the doGet() service
method is called. This technique is useful when you do not know which
database you want to connect to until information is supplied by the client. If
you are writing a servlet whose sole purpose is to access one database and
to access only one table or view in that database, then you should use the
Connection Manager API to manage your connections to the database. The
sample programs called DB2appServlet2.java and DB2netServlet2.java show
how to do this.

Sample output is shown for each of the programs. They also include
metadata extracted from the result set. They are helpful examples of how you
can extract and process detailed information about the table or view you are
querying.

The output also lists details of the drivers used and their code level.

When the servlets are invoked, they check to see if any data was entered in
the form and if there is none, the servlet only displays the form and none of
the other data.
© Copyright IBM Corp. 1999 225

Figure 115. DB2appServlet with a query filled in and ready to run
226 Linux for WebSphere and DB2 Servers

Figure 116. DB2appServlet after the query was run
Sample servlets without ConnMgr 227

12.1 App DB2 servlet - DB2appServlet1.java

Figure 117. DB2appServlet1.java (part 1 of 8)

The code in this section is standard Java servlet code but includes the
java.util.* import in order to use Vector, hashtable, and date classes.

/**
* @(#)DB2appServlet1.java 5.0 99/07/01
*
*/
import java.sql.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import sun.misc.*;
import java.util.*;
import java.net.*;

/**
* DB2appServlet1
*
* Access SAMPLE database created in DB2
* Program (DB2appServlet1.java) opens DB2 connections without using the Connection Manager
* Program (DB2appServlet2.java) opens DB2 connections using the Connection Manager
*
*/

public class DB2appServlet1 extends HttpServlet
{
public void init (ServletConfig config) throws ServletException {

super.init(config);
}

228 Linux for WebSphere and DB2 Servers

Figure 118. DB2appServlet1.java (part 2 of 8)

The service method is the standard doGet(), since we are extending
HttpServlet. This program establishes direct connections to the DB2
database and does not use the Connection Manager to manage the
connections. Program DB2appServlet2.java is essentially the same program
but does use the Connection Manager.

// **
// * Service Method
// **

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

String dbname, username, password, query, url, driver;
Connection con = null;
Statement stmt = null;
ResultSet rs = null;
ServletOutputStream out = res.getOutputStream();

// fetch the parameters
dbname = req.getParameter("dbname");
username = req.getParameter("username");
password = req.getParameter("password");
query = req.getParameter("query");

res.setContentType("text/html");
printPageHeader(out);

// if no parameters, just print the form
if (dbname == null || username == null || password == null ||

query == null) {
printPageFooter(out);
return;

}

url = "jdbc:db2:" + dbname;
driver = "COM.ibm.db2.jdbc.app.DB2Driver";

out.println("<hr><h3>Previous Query</h3>");
out.println("<pre>");
out.println("Database Name : "+dbname);
out.println("User Id : "+username);
out.println("Password : "+password);
out.println("SQL Query : "+query);
out.println("Web Url : "+url);
out.println("Driver : "+driver);
out.println("</pre>");
Sample servlets without ConnMgr 229

Figure 119. DB2appServlet1.java (part 3 of 8)

try {
// find the jdbc dbname

Class.forName(driver);
// get the connection to the database
con = DriverManager.getConnection(url, username, password);
out.println("<hr>");
out.println("<h3>JDBC Driver and Database Messages</h3>");
checkForWarning(con.getWarnings(), out);
DatabaseMetaData dma = con.getMetaData();
out.println("Connected to " + dma.getURL() + "
");
out.println("Driver " + dma.getDriverName() + "
");
out.println("Version " + dma.getDriverVersion() + "
");

// create and execute the query
stmt = con.createStatement();
rs = stmt.executeQuery(query);
// print out the result
dispResultSet(rs, out);
rs.close();
stmt.close();
con.close();
out.println("<hr>");

}
catch (SQLException ex) {

out.println("<hr>*** SQLException caught ***<p>");
while (ex != null) {
out.println("SQLState: " + ex.getSQLState() + "
");
out.println("Message: " + ex.getMessage() + "
");
out.println("Vendor: " + ex.getErrorCode() + "
");
ex = ex.getNextException();

}
}
catch (java.lang.Exception ex) {

ex.printStackTrace();
}

finally {
try
{

if(stmt != null)
{
stmt.close();
con.close();

}
}
catch(SQLException e1){};
}
printPageFooter(out);

}

230 Linux for WebSphere and DB2 Servers

Figure 120. DB2appServlet1.java (part 4 of 8)

/**
* Return servlet info
*/
public String getServletInfo() {

return "A simple WebSphere servlet to connect to DB2 SAMPLE or other, Database";
}

/**
* Check if the database server has anything to say
*/
private void checkForWarning(SQLWarning warn, ServletOutputStream out)

throws SQLException, IOException
{

boolean rc = false;

if (warn != null) {
out.println("<hr>*** Warning ***<p>");
rc = true;
while (warn != null) {

out.println("SQLState: " + warn.getSQLState() + "
");
out.println("Message: " + warn.getMessage() + "
");
out.println("Vendor: " + warn.getErrorCode() + "
");
warn = warn.getNextWarning();

}
}

}

Sample servlets without ConnMgr 231

Figure 121. DB2appServlet1.java (part 5 of 8)

/**
* Print one element
*/
private void dispElement(ResultSet rs, int dataType,

ServletOutputStream out, int col)
throws SQLException, IOException

{

// ask for data depending on the datatype
switch(dataType) {
case Types.DATE:
java.sql.Date date = rs.getDate(col);
out.println("<th>" + date.toString() + "</th>");
break;

case Types.TIME:
java.sql.Time time = rs.getTime(col);
out.println("<th>" + time.toString() + "</th>");
break;

case Types.TIMESTAMP:
java.sql.Timestamp timestamp = rs.getTimestamp(col);
out.println("<th>" + timestamp.toString() + "</th>");
break;

case Types.CHAR:
case Types.VARCHAR:
case Types.LONGVARCHAR:
String str = rs.getString(col);
out.println("<th>" + str + "</th>");
break;

case Types.NUMERIC:
case Types.DECIMAL:
java.math.BigDecimal numeric = rs.getBigDecimal(col, 10);
out.println("<th>" + numeric.toString() + "</th>");
break;

case Types.BIT:
boolean bit = rs.getBoolean(col);
out.println("<th>" + new Boolean(bit) + "</th>");
break;

case Types.TINYINT:
byte tinyint = rs.getByte(col);
out.println("<th>" + new Integer(tinyint) + "</th>");
break;

case Types.SMALLINT:
short smallint = rs.getShort(col);
out.println("<th>" + new Integer(smallint) + "</th>");
break;

case Types.INTEGER:
int integer = rs.getInt(col);
out.println("<th>" + new Integer(integer) + "</th>");
break;

case Types.BIGINT:
long bigint = rs.getLong(col);
out.println("<th>" + new Long(bigint) + "</th>");
break;
232 Linux for WebSphere and DB2 Servers

Figure 122. DB2appServlet1.java (part 6 of 8)

Figure 123. DB2appServlet1.java (part 7 of 8)

This is screen.
case Types.REAL:

float real = rs.getFloat(col);
out.println("<th>" + new Float(real) + "</th>");
break;

case Types.FLOAT:
case Types.DOUBLE:
double longreal = rs.getDouble(col);
out.println("<th>" + new Double(longreal) + "</th>");
break;

case Types.BINARY:
case Types.VARBINARY:
case Types.LONGVARBINARY:
byte[] binary = rs.getBytes(col);
out.println("<th>" + new String(binary, 0) + "</th>");
break;

}
}

/**
* Print header
*/
private void printPageHeader(ServletOutputStream out)

throws IOException
{

out.println("<html>");
out.println("<head>");
out.println("<tltle>WebSphere DB2 Servlet Test (app driver)</title>");
out.println("</head>");
out.println("<body>");
out.println("<center>" +

"WebSphere to DB2 Servlet Using 'app' Driver
" +
"" +
"(COM.ibm.db2.jdbc.app.DB2Driver - no ConnManager)" +
"</center>");

out.println("<hr>");
out.println("<form action=\"/servlet/DB2appServlet1\" method=\"get\">");
out.println("<pre>");
out.println("Database Name : <input type=textarea name=dbname> (Example: SAMPLE)");
out.println("User Id : <input type=textarea name=username> (Example: db2inst1)");
out.println("Password : <input type=textarea name=password> (Example: linux0)");
out.println("SQL Query : <input type=textarea name=query> (Example: select * from

employee)");
out.println("</pre>");
out.println("<input type=submit>");
out.println("</form>");

}

Sample servlets without ConnMgr 233

Figure 124. DB2appServlet1.java (part 8 of 8)

/**
* Print footer
*/
private void printPageFooter(ServletOutputStream out)

throws IOException
{

out.println("
End of Servlet Page
");
out.println("</body>");
out.println("</html>");
out.flush();

}
}

234 Linux for WebSphere and DB2 Servers

12.2 Net DB2 servlet - DB2netServlet1.java

Figure 125. DB2netServlet with a query entered and ready to run
Sample servlets without ConnMgr 235

Figure 126. DB2netServlet after the query was run
236 Linux for WebSphere and DB2 Servers

Figure 127. DB2netServlet1.java (part 1 of 8)

/**
* @(#)DB2netServlet1.java 5.0 99/07/01
*
*/
import java.sql.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import sun.misc.*;
import java.util.*;
import java.net.*;

/**
* DB2netServlet1
*
* Access SAMPLE database created by DB2
* Program (DB2netServlet1.java) opens DB2 connections without using the Connection Manager
* Program (DB2netServlet2.java) opens DB2 connections using the Connection Manager
*
*/

public class DB2netServlet1 extends HttpServlet
{
// **
// * Init Method
// **
public void init (ServletConfig config) throws ServletException {

super.init(config);
}

Sample servlets without ConnMgr 237

Figure 128. DB2netServlet1.java (part 2 of 8)

// **
// * Service Method
// **

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
String dbname, username, password, query, url, driver;
Connection con = null;
Statement stmt = null;
ResultSet rs = null;
ServletOutputStream out = res.getOutputStream();

// fetch the parameters
dbname = req.getParameter("dbname");
username = req.getParameter("username");
password = req.getParameter("password");
query = req.getParameter("query");

res.setContentType("text/html");
printPageHeader(out);

// if no parameters, just print the form
if (dbname == null || username == null || password == null ||

query == null) {
printPageFooter(out);
return;

}

url = "jdbc:db2:" + dbname;
driver = "COM.ibm.db2.jdbc.net.DB2Driver";

out.println("<hr><h3>Previous Query</h3>");
out.println("<pre>");
out.println("Host+DB Name : "+dbname);
out.println("User Id : "+username);
out.println("Password : "+password);
out.println("SQL Query : "+query);
out.println("Web Url : "+url);
out.println("Driver : "+driver);
out.println("</pre>");
238 Linux for WebSphere and DB2 Servers

Figure 129. DB2netServlet1.java (part 3 of 8)

try {
// find the jdbc dbname
Class.forName(driver);

// get the connection to the database
con = DriverManager.getConnection(url, username, password);
out.println("<hr>");
out.println("<h3>JDBC Driver and Database Messages</h3>");
checkForWarning(con.getWarnings(), out);
DatabaseMetaData dma = con.getMetaData();
out.println("Connected to " + dma.getURL() + "
");
out.println("Driver " + dma.getDriverName() + "
");
out.println("Version " + dma.getDriverVersion() + "
");

// create and execute the query
stmt = con.createStatement();
rs = stmt.executeQuery(query);

// print out the result
dispResultSet(rs, out);
rs.close();
stmt.close();
con.close();
out.println("<hr>");

}
catch (SQLException ex) {

out.println("<hr>*** SQLException caught ***<p>");
while (ex != null) {

out.println("SQLState: " + ex.getSQLState() + "
");
out.println("Message: " + ex.getMessage() + "
");
out.println("Vendor: " + ex.getErrorCode() + "
");
ex = ex.getNextException();

}
}
catch (java.lang.Exception ex) {

ex.printStackTrace();
}
finally {

try {
if(stmt != null) {

stmt.close();
con.close();

}
}
catch(SQLException e1){};
}

printPageFooter(out);
}

Sample servlets without ConnMgr 239

Figure 130. DB2netServlet1.java (part 4 of 8)

/**
* Return servlet info
*/
public String getServletInfo() {

return "A simple WebSphere servlet to connect to DB2 SAMPLE or other, Database";
}

/**
* Check if the database server has anything to say
*/
private void checkForWarning(SQLWarning warn, ServletOutputStream out)

throws SQLException, IOException
{

boolean rc = false;

if (warn != null) {
out.println("<hr>*** Warning ***<p>");
rc = true;
while (warn != null) {

out.println("SQLState: " + warn.getSQLState() + "
");
out.println("Message: " + warn.getMessage() + "
");
out.println("Vendor: " + warn.getErrorCode() + "
");
warn = warn.getNextWarning();

}
}

}

240 Linux for WebSphere and DB2 Servers

Figure 131. DB2netServlet1.java (part 5 of 8)

/**
* Display results in html table format
*/
private void dispResultSet(ResultSet rs, ServletOutputStream out)

throws SQLException, IOException
{

int i;

// metadata can supply information about the schema
ResultSetMetaData rsmd = rs.getMetaData();
int numCols = rsmd.getColumnCount();
out.println("<hr>");
out.println("<h3>Database Columns and Data</h3>");
out.println("<table border=3>");
out.println("<tr>");
for (i=1; i<=numCols; i++) {

out.println("<th>" + rsmd.getColumnLabel(i) + "</th>");
}
out.println("</tr>");

// for entire data
while (rs.next()) {

out.println("<tr>");

// for one row
for (i=1; i<=numCols; i++) {

dispElement(rs, rsmd.getColumnType(i), out, i);
}
out.println("</tr>");

}
out.println("</table>");

}

Sample servlets without ConnMgr 241

Figure 132. DB2netServlet1.java (part 6 of 8)

/**
* Print one element
*/
private void dispElement(ResultSet rs, int dataType,

ServletOutputStream out, int col)
throws SQLException, IOException

{

// ask for data depending on the datatype
switch(dataType) {
case Types.DATE:
java.sql.Date date = rs.getDate(col);
out.println("<th>" + date.toString() + "</th>");
break;

case Types.TIME:
java.sql.Time time = rs.getTime(col);
out.println("<th>" + time.toString() + "</th>");
break;

case Types.TIMESTAMP:
java.sql.Timestamp timestamp = rs.getTimestamp(col);
out.println("<th>" + timestamp.toString() + "</th>");
break;

case Types.CHAR:
case Types.VARCHAR:
case Types.LONGVARCHAR:
String str = rs.getString(col);
out.println("<th>" + str + "</th>");
break;

case Types.NUMERIC:
case Types.DECIMAL:
java.math.BigDecimal numeric = rs.getBigDecimal(col, 10);
out.println("<th>" + numeric.toString() + "</th>");
break;

case Types.BIT:
boolean bit = rs.getBoolean(col);
out.println("<th>" + new Boolean(bit) + "</th>");
break;

case Types.TINYINT:
byte tinyint = rs.getByte(col);
out.println("<th>" + new Integer(tinyint) + "</th>");
break;

case Types.SMALLINT:
short smallint = rs.getShort(col);
out.println("<th>" + new Integer(smallint) + "</th>");
break;

case Types.INTEGER:
int integer = rs.getInt(col);
out.println("<th>" + new Integer(integer) + "</th>");
break;

case Types.BIGINT:
long bigint = rs.getLong(col);
out.println("<th>" + new Long(bigint) + "</th>");
break;
242 Linux for WebSphere and DB2 Servers

Figure 133. DB2netServlet1.java (part 7 of 8)

case Types.REAL:
float real = rs.getFloat(col);
out.println("<th>" + new Float(real) + "</th>");
break;

case Types.FLOAT:
case Types.DOUBLE:
double longreal = rs.getDouble(col);
out.println("<th>" + new Double(longreal) + "</th>");
break;

case Types.BINARY:
case Types.VARBINARY:
case Types.LONGVARBINARY:
byte[] binary = rs.getBytes(col);
out.println("<th>" + new String(binary, 0) + "</th>");
break;

}
}

Sample servlets without ConnMgr 243

Figure 134. DB2netServlet1.java (part 8 of 8)

/**
* Print header
*/
private void printPageHeader(ServletOutputStream out)

throws IOException
{

out.println("<html>");
out.println("<head>");
out.println("<tltle>WebSphere DB2 Servlet Test (net driver)</title>");
out.println("</head>");
out.println("<body>");
out.println("<center><fonr size=5>" +

"WebSphere to DB2 Servlet Using 'net' Driver
" +
"" +
"<h3>(COM.ibm.db2.jdbc.net.DB2Driver - no ConnManager)</h3>" +
"</center>");

out.println("<hr>");
out.println("<form action=\"/servlet/DB2netServlet1\" method=\"get\">");
out.println("<pre>");

out.println("The following examples rely on running commands 'db2start' and 'db2jstrt
8083'");

out.println("in the DB2 instance login, on the DB2 Server machine.");
out.println("<p>");
out.println("Host+DB Name : <input type=textarea name=dbname col=80> (Example:

//9.24.105.23:8083/SAMPLE)");
out.println("User Id : <input type=textarea name=username col=25> (Example:

db2inst1)");
out.println("Password : <input type=textarea name=password col=25> (Example: linux0)");
out.println("SQL Query : <input type=textarea name=query col=25> (Example: select * from

emloyee)");
out.println("</pre>");
out.println("<input type=submit>");
out.println("</form>");

}

/**
* Print footer
*/
private void printPageFooter(ServletOutputStream out)

throws IOException
{

out.println("
End of Servlet Page
");
out.println("</body>");
out.println("</html>");
out.flush();

}

244 Linux for WebSphere and DB2 Servers

Chapter 13. Sample servlets using ConnMgr

The programs shown here (DB2appServlet2.java and DB2netServlet2.java)
are the same as DB2appServlet1.java and DB2netServlet1.java except that
instead of establishing a new connection each time the doGet() method is
run, the programs were changed to make use of the Connection Manager API
supplied as part of WebSphere. A connection pool is established at init() time
to a known database and each invocation of doGet() requests an already
open connection to this database from the Connection Manager.

The reason why it is preferable to use the Connection Manager for managing
connections to an RDBMS is to reduce the latency and considerable
overhead of having to open and close a connection each time the servlet is
called. The disadvantage, however, is that the servlet must know exactly to
which database it is connecting, at the time the servlet is first activated.

The information identifying a particular database and tables or view can be
hardcoded into the servlet program (as it is in these examples) or be placed
in a bundle or set in a properties file, as it is in the WebSphere sample
program called IBMConnMgrTest.java (see "Samples" in the WebSphere
online Documentation Center).

Most servlets are designed to perform a specific task, such as accessing data
from one database and one table or view. Having one servlet perform access
to multiple databases or views is not a very efficient use of WebSphere and
servlets. However, there may be servlet applications that do not know which
database they will connect to at any given invocation and thus may require
the client/user to enter information that identifies a particular database, table,
or view. In this case the servlet needs the information from the client before it
can open a connection. By looking at these modified sample programs you
should be able to see the differences between using either technique.

The Connection Manager can be configured for a number of parameters at
the time it is first called in the init() method. These are covered in the
Connection Manager API. The two most important parameters are the
maximum and minimum number of open connections to be managed and how
long a connection can live.

The next two figures show servlet DB2appServlet2 being used. The full
source code then follows. Servlet DB2netServlet2 is shown later in this
section.
© Copyright IBM Corp. 1999 245

Figure 135. DB2appServlet2 with a query entered and ready to run

When called, the servlet checks to see if the query is null. If it is, the servlet
knows to respond only with the initial form.

In this servlet the user types in a query and submits the form. The servlet
requests an open connection from the pool manager and executes the query.
246 Linux for WebSphere and DB2 Servers

Figure 136. DB2appServlet2 after the query was run

As with the earlier samples these servlets display metadata from the
database result set.
Sample servlets using ConnMgr 247

13.1 App DB2 servlet - DB2appServlet2.java

Figure 137. DB2appServlet2.java, (part 1 of 7)

/**
* @(#)DB2appServlet2.java 5.0 99/07/01
*
* This program is similar to DB2appServlet1.java but because it uses the
* Connection Manager, we have to shift some of the code from the service
* method doGet() into init(). This is because to use the Connection Manager
* we have to hard code (or use a resource bundle) to identify the database
* information needed to create a connection pool.
*
* The Connection manager portions of this program came from IBMConnMgrTest.java
*
*/
import java.sql.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import sun.misc.*;
import java.util.*;
import java.net.*;
import com.ibm.servlet.connmgr.*; // added import for Connection Manager

/**
* DB2appServlet2
*
* Access SAMPLE database created in DB2
* Program (DB2appServlet1.java) opens DB2 connections without using the Connection Manager
* Program (DB2appServlet2.java) opens DB2 connections using the Connection Manager
*
*/

public class DB2appServlet2 extends HttpServlet
{

// **
// * Variables
// **
// A class variable Connection Manager - note it is initialized to null.
static IBMConnMgr connMgr = null;

// More class variables for Use later in init() to create JDBC connection specification.
static IBMConnSpec spec = null; // the spec
static String dbName = null; // database name
static String db = "db2"; // JDBC subprotocol for DB2
static String poolName = "JdbcDb2"; // from Webmaster
static String jdbcDriver = "COM.ibm.db2.jdbc.app.DB2Driver";
static String url = null; // constructed later
static String user = null; // user and password could
static String password = null; // come from HTML form
static String owner = null; // table owner
248 Linux for WebSphere and DB2 Servers

Figure 138. DB2appServlet2.java, (part 2 of 7)

// **
// * Init Method
// **
public void init (ServletConfig config) throws ServletException {

super.init(config);

// The following data would normally be kept in a resource bundle and loaded at init time

dbName = "SAMPLE"; // code or import your database name here
url = "jdbc:" + db + ":" + dbName;
user = "db2inst1"; // code or import your userid here
password = "linux0"; // code or import your password here
owner = "db2inst1"; // code or import your owner here

try // Here we establish the Connection pool for this database
{

// Create JDBC connection specification.
spec = new IBMJdbcConnSpec

(poolName, // pool name from Webmaster
true, // waitRetry
jdbcDriver, // Remaining four
url, // parameters are
user, // specific for a
password); // JDBC connection.

// Here we obtain a reference to the connection manager just created.

connMgr = IBMConnMgrUtil.getIBMConnMgr();
}
catch(Exception ex)
{

System.out.println("set connection spec, get connection manager: " +
ex.getMessage());

}
}

Sample servlets using ConnMgr 249

Figure 139. DB2appServlet2.java, (part 3 of 7)

// **
// * Service Method
// **

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
IBMJdbcConn cmConn = null;
Connection dataConn = null;
Statement stmt = null;
ResultSet rs = null;
String query = null;
ServletOutputStream out = res.getOutputStream();
// fetch the database query string enterd by the user
query = req.getParameter("query");
res.setContentType("text/html");
printPageHeader(out);

// if no parameters, just print the form
if (query == null) {

printPageFooter(out);
return;

}
out.println("<hr><h3>Previous Query</h3>");
out.println("<pre>");
out.println("Database Name : "+dbName);
out.println("User Id : "+user);
out.println("Password : "+password);
out.println("SQL Query : "+query);
out.println("Web Url : "+url);
out.println("Driver : "+jdbcDriver);
out.println("</pre>");

try {
// Get an IBMJdbcConn object (cmConn) meeting JDBC
// connection specs, from the connection manager pool.

cmConn = (IBMJdbcConn)connMgr.getIBMConnection(spec);

// Get a Connection object (dataConn). This is
// an object from the java.sql package and it is used
// for JDBC access.

dataConn = cmConn.getJdbcConnection();

// We now have an open connection
}
catch(Exception ex) {

System.out.println("get connection, process statement: " +
ex.getMessage());

}
out.println("<hr>");
out.println("<h3>JDBC Driver and Database Messages</h3>");
250 Linux for WebSphere and DB2 Servers

Figure 140. DB2appServlet2.java, (part 4 of 7)

try {
DatabaseMetaData dma = dataConn.getMetaData();
out.println("Connected to " + dma.getURL() + "
");
out.println("Driver " + dma.getDriverName() + "
");
out.println("Version " + dma.getDriverVersion() + "
");

}
catch (SQLException ex) {

out.println("<hr>*** SQLException caught ***<p>");
while (ex != null) {

out.println("SQLState: " + ex.getSQLState() + "
");
out.println("Message: " + ex.getMessage() + "
");
out.println("Vendor: " + ex.getErrorCode() + "
");
ex = ex.getNextException();

}
}
// create and execute the query
try {

stmt = dataConn.createStatement();
rs = stmt.executeQuery(query);
dispResultSet(rs, out); // print out the result
rs.close();
stmt.close();
out.println("<hr>");

}
catch (SQLException ex) {

out.println("<hr>*** SQLException caught ***<p>");
while (ex != null) {

out.println("SQLState: " + ex.getSQLState() + "
");
out.println("Message: " + ex.getMessage() + "
");
out.println("Vendor: " + ex.getErrorCode() + "
");
ex = ex.getNextException();

}
}
catch (java.lang.Exception ex) {

ex.printStackTrace();
}
finally {

try {
if(stmt != null) {

stmt.close();
}

}
catch(SQLException ex){};
if(cmConn != null) {

try {
cmConn.releaseIBMConnection();

}
catch(IBMConnMgrException ex)
{

System.out.println("release connection: " + ex.getMessage());
}

}
printPageFooter(out);

}
}

Sample servlets using ConnMgr 251

Figure 141. DB2appServlet2.java, (part 5 of 7)

/**
* Return servlet info
*/
public String getServletInfo() {

return "A simple WebSphere servlet to connect to DB2 SAMPLE or other, Database";
}

/**
* Display results in html table format
*/
private void dispResultSet(ResultSet rs, ServletOutputStream out)

throws SQLException, IOException
{

int i;

// metadata can supply information about the schema
ResultSetMetaData rsmd = rs.getMetaData();
int numCols = rsmd.getColumnCount();
out.println("<hr>");
out.println("<h3>Database Columns and Data</h3>");
out.println("<table border=3>");
out.println("<tr>");
for (i=1; i<=numCols; i++) {

out.println("<th>" + rsmd.getColumnLabel(i) + "</th>");
}
out.println("</tr>");

// for entire data
while (rs.next()) {

out.println("<tr>");

// for one row
for (i=1; i<=numCols; i++) {

dispElement(rs, rsmd.getColumnType(i), out, i);
}
out.println("</tr>");

}
out.println("</table>");

}

252 Linux for WebSphere and DB2 Servers

Figure 142. DB2appServlet2.java, (part 6 of 7)

/**
* Print one element
*/

private void dispElement(ResultSet rs, int dataType,
ServletOutputStream out, int col)

throws SQLException, IOException
{

// ask for data depending on the datatype
switch(dataType) {
case Types.DATE:
java.sql.Date date = rs.getDate(col);
out.println("<th>" + date.toString() + "</th>");
break;

case Types.TIME:
java.sql.Time time = rs.getTime(col);
out.println("<th>" + time.toString() + "</th>");
break;

case Types.TIMESTAMP:
java.sql.Timestamp timestamp = rs.getTimestamp(col);
out.println("<th>" + timestamp.toString() + "</th>");
break;

case Types.CHAR:
case Types.VARCHAR:
case Types.LONGVARCHAR:
String str = rs.getString(col);
out.println("<th>" + str + "</th>");
break;

case Types.NUMERIC:
case Types.DECIMAL:
java.math.BigDecimal numeric = rs.getBigDecimal(col, 10);
out.println("<th>" + numeric.toString() + "</th>");
break;

case Types.BIT:
boolean bit = rs.getBoolean(col);
out.println("<th>" + new Boolean(bit) + "</th>");
break;

case Types.TINYINT:
byte tinyint = rs.getByte(col);
out.println("<th>" + new Integer(tinyint) + "</th>");
break;

case Types.SMALLINT:
short smallint = rs.getShort(col);
out.println("<th>" + new Integer(smallint) + "</th>");
break;

case Types.INTEGER:
int integer = rs.getInt(col);
out.println("<th>" + new Integer(integer) + "</th>");
break;

case Types.BIGINT:
long bigint = rs.getLong(col);
out.println("<th>" + new Long(bigint) + "</th>");
break;
Sample servlets using ConnMgr 253

Figure 143. DB2appServlet2.java, (part 7 of 7)

case Types.REAL:
float real = rs.getFloat(col);
out.println("<th>" + new Float(real) + "</th>");
break;

case Types.FLOAT:
case Types.DOUBLE:
double longreal = rs.getDouble(col);
out.println("<th>" + new Double(longreal) + "</th>");
break;

case Types.BINARY:
case Types.VARBINARY:
case Types.LONGVARBINARY:
byte[] binary = rs.getBytes(col);
out.println("<th>" + new String(binary, 0) + "</th>");
break;

}
}

/**
* Print header
*/
private void printPageHeader(ServletOutputStream out)

throws IOException {
out.println("<html>");
out.println("<head>");
out.println("<tltle>WebSphere DB2 Servlet Test (app driver)</title>");
out.println("</head>");
out.println("<body>");
out.println("<center>" +

"WebSphere to DB2 Servlet Using 'app' Driver
" +
"" +
"(COM.ibm.db2.jdbc.app.DB2Driver and using ConnManager)" +
"</center>");

out.println("<hr>");
out.println("<form action=\"/servlet/DB2appServlet2\" method=\"get\">");
out.println("<pre>");
out.println("SQL Query : <input type=textarea name=query> (Example: select * from

employee)");
out.println("</pre>");
out.println("<input type=submit>");
out.println("</form>");

}

/**
* Print footer
*/
private void printPageFooter(ServletOutputStream out)

throws IOException
{

out.println("
End of Servlet Page
");
out.println("</body>");
out.println("</html>");
out.flush();

}
}

254 Linux for WebSphere and DB2 Servers

13.2 Net DB2 servlet - DB2netServlet2.java

Figure 144. DB2netServlet2 with a query entered and ready to run
Sample servlets using ConnMgr 255

Figure 145. DB2netServlet2 after the query was run
256 Linux for WebSphere and DB2 Servers

Figure 146. DB2netServlet2.java, (part 1 of 7)

/**
* @(#)DB2netServlet2.java 5.0 99/07/01
*
* This program is similar to DB2netServlet1.java but because it uses the
* Connection Manager, we have to shift some of the code from the service
* method doGet() into init(). This is because to use the Connection Manager
* we have to hard code (or use a resource bundle) to identify the database
* information needed to create a connection pool.
*
* The Connection manager portions of this program came from IBMConnMgrTest.java
*
*/
import java.sql.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import sun.misc.*;
import java.util.*;
import java.net.*;
import com.ibm.servlet.connmgr.*; // added import for Connection Manager

/**
* DB2netServlet2
*
* Access SAMPLE database created in DB2
* Program (DB2netServlet1.java) opens DB2 connections without using the Connection Manager
* Program (DB2netServlet2.java) opens DB2 connections using the Connection Manager
*/

public class DB2netServlet2 extends HttpServlet {

// **
// * Variables
// **
// A class variable Connection Manager - note it is initialized to null.
static IBMConnMgr connMgr = null;

// More class variables for Use later in init() to create JDBC connection specification.
static IBMConnSpec spec = null; // the spec
static String dbName = null; // database name
static String hostName = null; // hostname
static String portNum = null; // port num
static String db = "db2"; // JDBC subprotocol for DB2
static String poolName = "JdbcDb2"; // from Webmaster
static String jdbcDriver = "COM.ibm.db2.jdbc.net.DB2Driver";
static String url = null; // constructed later
static String user = null; // user and password could
static String password = null; // come from HTML form
static String owner = null; // table owner
Sample servlets using ConnMgr 257

Figure 147. DB2netServlet2.java, (part 2 of 7)

// **
// * Init Method
// **
public void init (ServletConfig config) throws ServletException {

super.init(config);

// The following data would normally be kept in a resource bundle and loaded at init time

dbName = "SAMPLE"; // code or import your database name here
hostName = "9.24.105.23"; // code or import your hostname here
portNum = "8083"; // code or import your port num here
url = "jdbc:" + db + "://" + hostName + ":" + portNum + "/" + dbName;
user = "db2inst1"; // code or import your userid here
password = "linux0"; // code or import your password here
owner = "db2inst1"; // code or import your owner here

try // Here we establish the Connection pool for this database
{

// Create JDBC connection specification.
spec = new IBMJdbcConnSpec

(poolName, // pool name from Webmaster
true, // waitRetry
jdbcDriver, // Remaining four
url, // parameters are
user, // specific for a
password); // JDBC connection.

// Here we obtain a reference to the connection manager just created.

connMgr = IBMConnMgrUtil.getIBMConnMgr();
}
catch(Exception ex)
{

System.out.println("set connection spec, get connection manager: " +
ex.getMessage());

}
}

258 Linux for WebSphere and DB2 Servers

Figure 148. DB2netServlet2.java, (part 3 of 7)

// **
// * Service Method
// **

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
IBMJdbcConn cmConn = null;
Connection dataConn = null;
Statement stmt = null;
ResultSet rs = null;
String query = null;
ServletOutputStream out = res.getOutputStream();

// fetch the database query string enterd by the user
query = req.getParameter("query");

res.setContentType("text/html");
printPageHeader(out);

// if no parameters, just print the form
if (query == null) {

printPageFooter(out);
return;

}

out.println("<hr><h3>Previous Query</h3>");
out.println("<pre>");
out.println("Database Name : "+dbName);
out.println("User Id : "+user);
out.println("Password : "+password);
out.println("SQL Query : "+query);
out.println("Web Url : "+url);
out.println("Driver : "+jdbcDriver);
out.println("</pre>");

try {
// Get an IBMJdbcConn object (cmConn) meeting JDBC
// connection specs, from the connection manager pool.

cmConn = (IBMJdbcConn)connMgr.getIBMConnection(spec);

// Get a Connection object (dataConn). This is
// an object from the java.sql package and it is used
// for JDBC access.

dataConn = cmConn.getJdbcConnection();

// We now have an open connection
}
catch(Exception ex) {

System.out.println("get connection, process statement: " +
ex.getMessage());

}
out.println("<hr>");
out.println("<h3>JDBC Driver and Database Messages</h3>");
Sample servlets using ConnMgr 259

Figure 149. DB2netServlet2.java, (part 4 of 7)

try {
DatabaseMetaData dma = dataConn.getMetaData();
out.println("Connected to " + dma.getURL() + "
");
out.println("Driver " + dma.getDriverName() + "
");
out.println("Version " + dma.getDriverVersion() + "
");

}
catch (SQLException ex) {

out.println("<hr>*** SQLException caught ***<p>");
while (ex != null) {

out.println("SQLState: " + ex.getSQLState() + "
");
out.println("Message: " + ex.getMessage() + "
");
out.println("Vendor: " + ex.getErrorCode() + "
");
ex = ex.getNextException();

}
}
// create and execute the query
try {

stmt = dataConn.createStatement();
rs = stmt.executeQuery(query);
dispResultSet(rs, out); // print out the result
rs.close();
stmt.close();
out.println("<hr>");

}
catch (SQLException ex) {

out.println("<hr>*** SQLException caught ***<p>");
while (ex != null) {

out.println("SQLState: " + ex.getSQLState() + "
");
out.println("Message: " + ex.getMessage() + "
");
out.println("Vendor: " + ex.getErrorCode() + "
");
ex = ex.getNextException();

}
}
catch (java.lang.Exception ex) {

ex.printStackTrace();
}
finally {

try {
if(stmt != null) {

stmt.close();
}

}
catch(SQLException ex){};
if(cmConn != null) {

try {
cmConn.releaseIBMConnection();

}
catch(IBMConnMgrException ex) {

System.out.println("release connection: " + ex.getMessage());
}

}
printPageFooter(out);

}
}

260 Linux for WebSphere and DB2 Servers

Figure 150. DB2netServlet2.java, (part 5 of 7)

/**
* Return servlet info
*/
public String getServletInfo() {

return "A simple WebSphere servlet to connect to DB2 SAMPLE or other, Database";
}

/**
* Display results in html table format
*/
private void dispResultSet(ResultSet rs, ServletOutputStream out)

throws SQLException, IOException
{

int i;

// metadata can supply information about the schema
ResultSetMetaData rsmd = rs.getMetaData();
int numCols = rsmd.getColumnCount();
out.println("<hr>");
out.println("<h3>Database Columns and Data</h3>");
out.println("<table border=3>");
out.println("<tr>");
for (i=1; i<=numCols; i++) {

out.println("<th>" + rsmd.getColumnLabel(i) + "</th>");
}
out.println("</tr>");

// for entire data
while (rs.next()) {

out.println("<tr>");

// for one row
for (i=1; i<=numCols; i++) {

dispElement(rs, rsmd.getColumnType(i), out, i);
}
out.println("</tr>");

}
out.println("</table>");

}

Sample servlets using ConnMgr 261

Figure 151. DB2netServlet2.java, (part 6 of 7)

This is screen.
/**

* Print one element
*/
private void dispElement(ResultSet rs, int dataType,

ServletOutputStream out, int col)
throws SQLException, IOException

{

// ask for data depending on the datatype
switch(dataType) {
case Types.DATE:
java.sql.Date date = rs.getDate(col);
out.println("<th>" + date.toString() + "</th>");
break;

case Types.TIME:
java.sql.Time time = rs.getTime(col);
out.println("<th>" + time.toString() + "</th>");
break;

case Types.TIMESTAMP:
java.sql.Timestamp timestamp = rs.getTimestamp(col);
out.println("<th>" + timestamp.toString() + "</th>");
break;

case Types.CHAR:
case Types.VARCHAR:
case Types.LONGVARCHAR:
String str = rs.getString(col);
out.println("<th>" + str + "</th>");
break;

case Types.NUMERIC:
case Types.DECIMAL:
java.math.BigDecimal numeric = rs.getBigDecimal(col, 10);
out.println("<th>" + numeric.toString() + "</th>");
break;

case Types.BIT:
boolean bit = rs.getBoolean(col);
out.println("<th>" + new Boolean(bit) + "</th>");
break;

case Types.TINYINT:
byte tinyint = rs.getByte(col);
out.println("<th>" + new Integer(tinyint) + "</th>");
break;

case Types.SMALLINT:
short smallint = rs.getShort(col);
out.println("<th>" + new Integer(smallint) + "</th>");
break;

case Types.INTEGER:
int integer = rs.getInt(col);
out.println("<th>" + new Integer(integer) + "</th>");
break;

case Types.BIGINT:
long bigint = rs.getLong(col);
out.println("<th>" + new Long(bigint) + "</th>");
break;
262 Linux for WebSphere and DB2 Servers

Figure 152. DB2netServlet2.java, (part 7 of 7)

case Types.REAL:
float real = rs.getFloat(col);
out.println("<th>" + new Float(real) + "</th>");
break;

case Types.FLOAT:
case Types.DOUBLE:
double longreal = rs.getDouble(col);
out.println("<th>" + new Double(longreal) + "</th>");
break;

case Types.BINARY:
case Types.VARBINARY:
case Types.LONGVARBINARY:
byte[] binary = rs.getBytes(col);
out.println("<th>" + new String(binary, 0) + "</th>");
break;

}
}
/**
* Print header
*/
private void printPageHeader(ServletOutputStream out)

throws IOException {
out.println("<html>");
out.println("<head>");
out.println("<tltle>WebSphere DB2 Servlet Test (net driver)</title>");
out.println("</head>");
out.println("<body>");
out.println("<center>" +

"WebSphere to DB2 Servlet Using 'net' Driver
" +
"" +
"(COM.ibm.db2.jdbc.net.DB2Driver and using ConnManager)" +
"</center>");

out.println("<hr>");
out.println("<form action=\"/servlet/DB2netServlet2\" method=\"get\">");
out.println("<pre>");
out.println("SQL Query : <input type=textarea name=query> (Example: select * from

employee)");
out.println("</pre>");
out.println("<input type=submit>");
out.println("</form>");

}
/**
* Print footer
*/
private void printPageFooter(ServletOutputStream out)

throws IOException {
out.println("
End of Servlet Page
");
out.println("</body>");
out.println("</html>");
out.flush();

}

Sample servlets using ConnMgr 263

264 Linux for WebSphere and DB2 Servers

Appendix A. Installing IBM HTTP Server Beta 3 with SSL

This section will discuss the procedures and components for installing the
Secure Sockets Layer (SSL) module for IBM HTTP Server Beta 3. IBM HTTP
Server Beta 3 is downloadable from:

http://www.software.ibm.com/webservers/httpservers/

A.1 IBM HTTP Server

IBM HTTP Server features include:

• Easy installation
• Support for SSL secure connections
• Customer-designed services
• IBM support
• Help information that uses the easy-to-navigate design that is common

to all WebSphere products

A.1.1 SSL Protocol

This protocol, implemented using IBM security libraries, ensures that data
transferred between a client and a server remains private. Once your server
has a digital certificate, SSL-enabled browsers like Netscape Navigator and
Microsoft Internet Explorer can communicate securely with your server using
the SSL protocol.

The IBM HTTP Server powered by Apache supports client authentication,
configurable cipher specifications, and session ID caching for improving SSL
performance on the UNIX platforms.

A.1.2 Install IBM HTTP Server

In 5.7.1, “IBM HTTP Server install steps” on page 33, we showed the steps to
install IBM HTTP Server. Before you proceed with the remaining section,
please be sure you have successfully installed this Web server.

Another prerequisite is that you should install Java Development Kit (JDK)
1.1.7 V3 or higher and use THREADS_FLAG system variable set to "green
thread". There are other system dependency files that you may need to install
depending on your Linux distribution. Please refer to the readme.linux file in
the tar file.
© Copyright IBM Corp. 1999 265

A.1.3 Installing global security kit (GSK)

GSK is packaged in tar files: gsk4bas-XXX.rpm and gsk4ikm-XXX.rpm,
where XXX is the 4.0-1.1.i386 version number at the time of this writing.
These packages include the library modules and documentations associated
with the Key Management (IKEYMAN) utility for creating and maintaining
certificates. The IKEYMAN utility creates server certificates for SSL.

To set up SSL secure connections, your public key must be associated either
with a digitally signed certificate from a certificate authority (CA) or with a
self-signed certificate created using IBM IKEYMAN utility. CA is an external
signed certificate provider that is designated as a trusted CA on your server.
IBM HTTP Server supports the following external CAs:

1. VeriSign
2. Thawte

Before you can install the SSL modules, you need to first install
gsk4bas-4.0-1.1.i386.rpm and gsk4ikm-4.0-1.1.i386.rpm files. You can use
your package manager on your distribution (gnorpm on Red Hat and
kpackage on OpenLinux), or run the following commands:

rpm -ivh gsk4bas-4.0-1.1.i386.rpm
rpm -ivh gsk4ikm-4.0-1.1.i386.rpm

A.1.4 Install IBM SSL modules

Your installation source will include these two files:
IBM_SSL_56-1.3.6-1.i386.rpm and IBM_SSL_Base-1.3.6-1.i386.rpm

The IBM Secure Sockets Layer (SSL) modules contain the encryption library
files as well as the IKEYMAN utility program for creating and storing server
certificates. The IBM SSL library modules provide encrypted HTTPS
connection for the IBM HTTP Server. It uses the public key technology to
negotiate a session key and crypto algorithms between client and server.

Use the package program on your distribution to install these rpm files,
starting first with IBM_SSL_Base-1.3.6-1.i386.rpm file and then
IBM_SSL_56-1.3.6-1.i386.rpm.

Alternatively, you can run these commands:

rpm -ivh IBM_SSL_Base-1.3.6-1.i386.rpm
rpm -ivh IBM_SSL_56-1.3.6-1.i386.rpm.
266 Linux for WebSphere and DB2 Servers

A.2 Prepare Server Certificate

In this section we will show the steps for creating a self-signed certificate for
using SSL with IBM HTTP Server.

A.2.1 Creating a key database

Use IKEYMAN to create the key database file, public-private key pair, and
certificate request. A key database is a file that the server uses to store one
or more key pairs and certificates. You can use one key database for all your
key pairs and certificates or create multiple databases.

IKEYMAN lets you create a self-signed certificate or store an authorized
certificate. If you are using a Certificate Authority (CA) for your server
certificate, after you receive the CA-signed certificate, use IKEYMAN to
receive the certificate into the key database where you created the original
certificate request.

Type ikeyman in an xterm to run the Java-based IBM Key Management
program.

From IKEYMAN’s menu choose Key Database File -> New; IKEYMAN
presents a dialog box titled New. Fill out the following fields:

1. In the Key database type field, use the default value of CMS key
database File.

2. In the File Name field, provide a key name (for example, mycert.kdb).

3. In the Location field, type the directory to store the key database file
(for example, /opt/IBMHTTPServer/keys/).

The next dialog box requires you to fill in the password and expiration time,
and decide if you want to stash the password to a file:

1. Provide a password (do not lose the password; write it down).

2. Leave the expiration time field unchecked.

3. Be sure to check the Stash password to a file box. For a secure
network connection, you must store the encrypted database password

The directory /opt/IBMHTTPServer/keys/ is not created by default.
You must create this subdirectory beforehand.

Note
Installing IBM HTTP Server Beta 3 with SSL 267

in a stash file. Click Help for more details,or click OK to continue. See
Figure 153.

Figure 153. IKEYMAN dialog box; use stash to store the password

A.2.2 Create a self-signed certificate

From IKEYMAN’s menu select Create -> New Self-Signed Certificate;
IKEYMAN presents a dialog box titled Create New Self-Signed Certificate
(see Figure 154). Fill out the following fields:

1. In the Key label field, type in any label. This label identifies the key and
certificate in the key database.

2. In the Version field , click the drop-down list, and select the value X509
V2.

Note: The production version supports both X509 V2 and X509 V3. In
this beta version of IBM HTTP Server, we will use X509 V2.

3. In the Common Name field, IKEYMAN picks up the default domain
name of the server. Leave this field as is.

4. In the Organization field, type in the organization name.

5. In the Validity Period field, use the default value of 365 days.
268 Linux for WebSphere and DB2 Servers

Figure 154. Create a self-signed certificate

A.3 Register key database with IBM HTTP Server

After creating a server key database, a self-signed certificate is created. For
IBM HTTP Server to use this server certificate to encrypt SSL connection
with a client browser, the following steps must be completed:

1. Register the server key database with the server.

If you just installed IBM HTTP Server and have not modified your
httpd.conf file, you can replace your existing httpd.conf with
httpd.conf.sample, which is a template file for setting the SSL
configuration for your HTTP Server. Otherwise, reference
httpd.conf.sample to edit your existing httpd.conf file.

To use the template file, copy it as httpd.conf, and edit httpd.conf as
follows:

1. Uncomment the LoadModule directive for
/libexec/mod_ibm_ssl_56.so. See Figure 155.
Installing IBM HTTP Server Beta 3 with SSL 269

Figure 155. LoadModule directive enables 56-bit encryption module

2. Uncomment AddModule for mod_ibm_ssl.c. See Figure 156.

Figure 156. AddModule directive is used for loading SSL library

3. Ensure that the line Listen 443 is uncommented.
270 Linux for WebSphere and DB2 Servers

4. Place the host name of the server in the virtual host stanza for port
443. See Figure 157.

Figure 157. Use VirtualHost tag to listen to port 443

5. Ensure that the SSLEnable line is uncommented in the virtual host
stanza.

6. Uncomment the </VirtualHost> tag.

7. Set the Keyfile directive; it belongs outside of the virtual host
stanza. See Figure 158 on page 272.

The directory /opt/IBMHTTPServer/keys/ was created manually using the
command line: mkdir /opt/IBMHTTPServer/keys during creation of the key
database. Enter your directory path where you store your key file for this
directive.

Note
Installing IBM HTTP Server Beta 3 with SSL 271

Figure 158. Register the server certificate for IBM HTTP

2. Restart the server. Type reboot at a command line. As an alternative you
can restart the server by typing the following commands at the console:

/etc/rc.d/init.d/ibmhttpd stop
/etc/rc.d/init.d/ibmhttpd start

To access the server using SSL, use the HTTPS protocol, Type the following
into your browser’s URL location bar:

https://<hostname>

where <hostname> is the domain name or IP address set in the httpd.conf file.
For example, https://calsrv2.itso.ral.ibm.com in Figure 159 on page 273.
272 Linux for WebSphere and DB2 Servers

Figure 159. SSL-enabled IBM HTTP Server using 56-bit encryption
Installing IBM HTTP Server Beta 3 with SSL 273

274 Linux for WebSphere and DB2 Servers

Appendix B. Special notices

This publication is intended to help customers, business partners and IBM
employees implement WebSphere Application Server and DB2 Universal
Database on the Linux operating system. The information in this publication is
not intended as the specification of any programming interfaces that are
provided by WebSphere Application Server and DB2 Universal Database.
See the PUBLICATIONS section of the IBM Programming Announcement for
more information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
© Copyright IBM Corp. 1999 275

that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

TurboLinux, Inc., TurboLinux, and TurboLinux logo are trademarks of
TurboLinux Incorporated.

Red Hat is a registered trademark, the Red Hat Shadow Man logo and RPM
are trademarks of Red Hat Software, Inc.

SuSE is a trademark of SuSE GmbH.

Caldera Systems, Inc. is a registered trandmark of Caldera, Inc. OpenLinux is
a trademark of Caldera, Inc.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United

AIX AS/400
CICS DataJoiner
DB2 Distributed Relational Database Architecture
IBM IMS
MQSeries Net.Data
Netfinity OS/2
OS/390 RS/6000
S/390 System/390
TechConnect VisualAge
WebSphere
276 Linux for WebSphere and DB2 Servers

States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Special notices 277

278 Linux for WebSphere and DB2 Servers

Appendix C. Related resources

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook:

• The Cathedral and the Bazaar by Eric S Raymond, found at
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-

bazaar.html

• The CGI Specification, found at
http://hoohoo.ncsa.uiuc.edu/cgi/interface.html

C.1 Redbooks on CD-ROMs

Redbooks are available on the following CD-ROMs. Click the CD-ROMs
button at www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

C.2 Referenced Web sites

The following World Wide Web sites may provide more information about the
topics discussed in this redbook:

• www.linux.org

• www.redhat.com

• www.caldera.com

• www.turbolinux.com

• www.suse.com

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177

Networking and Systems Management Redbooks Collection SK2T-6022

Transaction Processing and Data Management Redbooks Collection SK2T-8038

Lotus Redbooks Collection SK2T-8039

Tivoli Redbooks Collection SK2T-8044

AS/400 Redbooks Collection SK2T-2849

Netfinity Hardware and Software Redbooks Collection SK2T-8046

RS/6000 Redbooks Collection (BkMgr) SK2T-8040

RS/6000 Redbooks Collection (PDF Format) SK2T-8043

Application Development Redbooks Collection SK2T-8037

IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 1999 279

• www.blackdown.org

• www.software.ibm.com/webservers/

• www.software.ibm.com/data/db2/linux/

• www.software.ibm.com/ad/vajava/

• www.alphaworks.ibm.com

• www.fsf.org

• learn.ibm.be/linux/

• www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar.html

• www.gnu.org/copyleft/gpl.html

• www.metalab.unc.edu/Linux/

• www.cert.org

• www.ctv.es/USERS/xose/linux/linux_ports.html

• www.tuxedo.org/~esr/halloween.html

• www.netcraft.com/survey

• www.sitemetrics.com/serversurvey/index.htm

• www.zdnet.com/sr/stories/news/0,4538,2309670,00.html

• www.ibm.com/linux/

• www.software.ibm.com

• www.javasoft.com

• www.javasoft.com/products/servlet/index.html

• www.software.ibm.com/webservers/

• www.javasoft.com/products/servlet/index.html

• www.javasoft.com/security/usingJavakey.html

• www.w3.org/Protocols/

• www.ibm.com/developer/xml/

• www.alphaworks.ibm.com

• java.sun.com/products/

• www.software.ibm.com/webservers/httpservers/

• www.landrover.com

• ftp.calderasystems.com/pub/
280 Linux for WebSphere and DB2 Servers

• www.metalab.unc.edu/pub/Linux/distributions/redhat/redhat-6.0/i386/RedHa

t/RPMS/

• ftp://ftp.calderasystems.com/pub/openlinux/2.2/col/contrib/RPMS/

• ftp.linuxland.de/pub/OpenLinux/crypto/2.2/RPMS/

• ftp.software.ibm.com/ps/products/db2/tools/
Related resources 281

282 Linux for WebSphere and DB2 Servers

How to get ITSO redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM redbooks from the redbooks Web site. Also
read redpieces and download additional materials (code samples or diskette/CD-ROM images) from
this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 283

IBM redbook fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
284 Linux for WebSphere and DB2 Servers

List of abbreviations

API application program
interface

CGI Common Gateway
Interface

CORBA Common Object
Request Broker
Architecture

DB2 DATABASE 2

DCS Dynamically
Constructed Servlet

DRDA Distributed Relational
Database Architecture

EJB Enterprise JavaBeans

GB gigabyte

GNOME GNU Network Object
Model Environment

GPL General Public License

GSK global security kit

GUI graphical user interface

HP Hewlett Packard

HTML Hypertext Markup
Language

HTTP Hypertext Transfer
Protocol

HTTPS Secure HTTP

IBM International Business
Machines Corporation

IIOP open database
connectivity

IP Internet Protocol

IT information technology

ITSO International Technical
Support Organization

JDBC Java database
connectivity

JDK Java Development Kit
© Copyright IBM Corp. 1999
DOM Document Object
Model

JSP JavaServer Pages

KB kilobyte

KDE K Desktop Environment

LAN local area network

MB megabyte

MIME Multipurpose Internet
Mail Extensions

ODBC open database
connectivity

ORB object request broker

RAM random access
memory

RDBMS relational database
management system

RMI remote method
invocation

RPM Red Hat package
manager

SAM Site Activity Monitor

SAX simple API for XML

SQL structured query
language

SSL Secure Sockets Layer

TCP/IP Transmission Control
Protocol/Internet
Protocol

URI Universal Resource
Identifier

URL Universal Resource
Locator

WWW World Wide Web

XML eXtensible Markup
Language
285

286 Linux for WebSphere and DB2 Servers

Index

A
Apache 4

installation and configuration 32
market share 4, 8
testing installation 34

API extension 89
life cycle 91

Application Framework for e-business 19

B
Blackdown JDK117 31

C
Caldera OpenLinux 3, 9

Apache reinstall 32
installing DB2 40
operating system’s growth 3
setup wizard 6

CGI base to servlet 117
CGI scripts 89

life cycle 91
CGI versus servlets 95
COBRA 122, 185
connection pooling 101
CPUs 3

D
DB2 Universal Database 22

deinstalling DB2 48
installation and configuration 39
remove Administration Server 48
verifying the installation 47

DELETE method
p 146

destroy() method 70, 113, 115
DiskDruid 29
Document Object Model (DOM) 178
doGet() method 95
doPost() method 95

E
e-business Application Framework 19
e-business architecture 12
e-business framework 11
© Copyright IBM Corp. 1999
Enterprise Java Beans (EJB) 174
EJBHome 176
EJBObject 176
entity beans 176
interfaces 176
session beans 175
stateful beans 176
stateless beans 175
structure 175

G
General Public License 3, 8
GenericServlet 108
GenericServlet class 67, 70, 113
GET 108, 117
get 71
GET method 145, 164
getAuthType() 111
getContentLength() 110
getContentType() 111
getHeaderNames() 111
getMethod() 110
getParameterNames() 111
getPathInfo() 110
getPathTranslated() 110
getProtocol() 110
getQueryString() 110
getRemoteAddr() 111
getRemoteHost() 111
getRemoteUser() 111
getRequestURI() 110
getServerName() 111
getServerPort() 111
getServletPath() 110
glibc 39
Global Security Kit (GSK) 266
GNOME 5
graphics adapter setup 29

H
Hardware and software setup 23

Hardware setup 25
installing Linux 28

Caldera OpenLinux 28
graphics adapter setup 29
partitions 28
287

Red Hat 28
TurboLinux 28

LAN setup 26
Netfinity 3000 26
Netfinity 5000 26

HTML template syntax 79
alternate 81
basic 80

HTTPServlet 108
HttpServlet class 67, 71, 113

I
IBM 9

Advanced File System 9
applications 9
commitment to Linux 9
DB2 Universal Database 9
e-business 9
e-business Application Framework 11
Host On-Demand 9
JDK 31
Lotus Domino 9
MQSeries 9
Netfinity servers 9
WebSphere 9

IBM HTTP Server 33
SSL 265
startup script 35

IBMConnMgr 101
init() method 70, 112
install sequence checklist 25
installing Linux 28

J
JAR file 132, 135

signed 135
Java 13

advantages of servlets 64
install steps 31
installation and configuration 30
servlet API methods 116
servlet overview 63
testing 31

Java Servlet Development Kit (JSDK) 72
Java servlets 63
Java Vitual Machine 63
JAVA_HOME variable 135
JavaServer Page (JSP) 74, 188

advantages 75
JavaServer Page API 84
specification 75

JavaServer Pages (JSP) 122
javax.servlet 66
javax.servlet.http 66
JDBC 121, 185

sample program 209
JDK116 31

K
KDE 5
Korn shell 39

L
libstdc++ 39
Linux 3

an alternative 7
ease of use 5
GUIs 5
online introduction 7
resources on the Web 24
security 5

log() method 68, 116

N
Netfinity 9

P
paint() method 113
partitions 28
pdksh 39
POST 108, 117
post 71
POST method 164

p 146
program samples 209

DB2netProgram1.java 219
Java program DB2appProgram1.java 214
sample Java JDBC programs 209
servlets using ConnMgr 245
servlets without ConnMgr 225

programming WebSphere’s servlet API extensions
98
PUT method

p 145
288 Linux for WebSphere and DB2 Servers

R
RDBMS 245
Red Hat 3, 9

installing DB2 42
operating system’s growth 3

repaint() method 113
RMI 185
RPM 39

S
service() method 68, 113
servlet

advantages 64
API 183
design patterns for e-commerce 183

dynamically generated images 193
personalization 188
tiered topology 184

life cycle 93
overview 63
programming model 89

CGI and Web server API extension 89
structure 66
summary 92
threding 97
with JavaServer Page (JSP) 74

servlets 90
Simple API for XML (SAX) 180
SSL 156, 265
start() method 113
stop() method 113
SuSE 3, 9

installing DB2 42
operating system’s growth 3

T
TurboLinux 3, 9

installing DB2 42
operating system’s growth 3

V
video resolution 29
VisualAge for Java 20

installation and configuration 58

W
Web programming model 63

WebSphere Application Server 21, 51
ACLs 141
administrator 129
Apache configuration file 53
certificate URL 134
defaultRealm 125, 126, 129, 137
file resource 156
group 137
installation and configuration 51
Members list 139
Non-Members list 139
NT realm 126, 128, 129, 153
realm 125
resources 153
security 121
servlet API extensions 72
servlet resource 163
servletMgrRealm 125, 126, 127, 129
servlet-signer 126, 132
snoop servlet 57
UNIX realm 126, 129, 153
user 129
user, admin 129

X
XML 177

Document Object Model (DOM) 178
Simple API for XML (SAX) 180

XML
186

X-Window 29
289

290 Linux for WebSphere and DB2 Servers

© Copyright IBM Corp. 1999 291

ITSO redbook evaluation

Linux for WebSphere and DB2 Servers
SG24-5850-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Printed in the U.S.A.

SG24-5850-00

L
inux

for
W

ebSphere
and

D
B

2
Servers

S
G

24-5850-00

	Contents
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. The Linux operating system
	1.1 Commercializing Linux
	1.2 Best things on the Internet are free?
	1.3 Linux performance, stability, and security
	1.4 Ease of use
	1.4.1 Summary

	Chapter 2. IBM’s commitment to Linux
	Chapter 3. The IBM Application Framework for e-business
	3.1 e-business: merging the Internet and IBM technology
	3.2 Foundations of the IBM Application Framework for e-business
	3.3 Java everywhere
	3.4 Connectors are bridges between networks
	3.4.1 Some key reasons for using connectors

	3.5 Service modules in the Application Framework for e-business
	3.5.1 The e-business application services
	3.5.2 The Web application programming model using IBM software
	3.5.3 Summary

	Chapter 4. WebSphere, VisualAge for Java and DB2
	4.1 Foundation of the IBM Application Framework for e-business
	4.2 VisualAge for Java
	4.2.1 Methods of delivery

	4.3 IBM WebSphere Application Server
	4.4 DB2 Universal Database- the foundation for e-business

	Chapter 5. Hardware and software setup
	5.1 Initial setup guidelines
	5.1.1 Recommended install sequence checklist

	5.2 Hardware setup
	5.2.1 Netfinity 3000
	5.2.2 Netfinity 5000

	5.3 Lab LAN setups
	5.4 Linux - installation and configuration
	5.4.1 Installing Linux
	5.4.2 Graphics adapter setup

	5.5 Product installation preparation
	5.6 Java - Installation and configuration
	5.6.1 Java install steps
	5.6.2 Java testing and setup

	5.7 Apache - installation and configuration
	5.7.1 IBM HTTP Server install steps
	5.7.2 Testing Apache
	5.7.3 Setting up IBM HTTP Server startup script
	5.7.4 Getting IBM HTTP Server (apachectl) to start at boot time
	5.7.5 Detecting Apache problems

	5.8 Installing and configuring DB2 Universal Database
	5.9 Before you begin
	5.9.1 Caldera OpenLinux Version 2.2 or Version 2.3
	5.9.2 Red Hat Linux Version 5.2 or Version 6.0
	5.9.3 TurboLinux Version 3.6
	5.9.4 SuSE Linux Version 6.1

	5.10 Performing the installation
	5.10.1 Verifying the installation

	5.11 Deinstalling DB2 Universal Database
	5.11.1 Step 1. Stop and remove the Administration Server
	5.11.2 Step 2. Stop and remove any instances
	5.11.3 Step 2. Deinstall DB2

	5.12 WebSphere Application Server - installation and configuration
	5.12.1 WebSphere install steps

	5.13 VisualAge for Java for Linux - installation and configuration

	Chapter 6. Web programming model
	6.1 Overview of Java servlets
	6.1.1 Advantages of servlets

	6.2 Structure of the Java servlets
	6.2.1 Interface javax.servlet.Servlet
	6.2.2 Interface javax.servlet.ServletConfig
	6.2.3 Interface javax.servlet.ServletContext
	6.2.4 Interface javax.servlet.ServletRequest
	6.2.5 Interface javax.servlet.ServletResponse
	6.2.6 Interface javax.servlet.http.HttpServletRequest
	6.2.7 Interface javax.servlet.http.HttpServletResponse
	6.2.8 javax.servlet.GenericServlet
	6.2.9 Class javax.servlet.ServletInputStream
	6.2.10 Class javax.servlet.ServletOutputStream
	6.2.11 Class javax.servlet.http.HttpServlet
	6.2.12 Class javax.servlet.http.HttpUtils
	6.2.13 Exception javax.servlet.ServletException
	6.2.14 Exception javax.servlet.UnavailableException

	6.3 Java Servlets Development Kit from Sun
	6.4 WebSphere Application Server Servlets API extensions
	6.5 Servlets with JSPs
	6.5.1 JavaServer Page (JSP) Overview
	6.5.2 Advantages of JSP
	6.5.3 JavaServer Page Specification
	6.5.4 HTML template syntax for variable data
	6.5.5 JavaServer Page API
	6.5.6 Preventing Web page caching

	Chapter 7. Servlet programming model
	7.1 Issues with CGI scripts and Web server API extension
	7.2 CGI scripts, API extensions and servlets - life cycles
	7.2.1 CGI scripts - life cycle
	7.2.2 API extension - life cycle
	7.2.3 Summary of a servlet
	7.2.4 Servlet life cycle

	7.3 Environment variables in CGI versus Servlets
	7.4 Servlet threading - reentrancy of servlets
	7.5 Programming WebSphere’s servlet API extensions
	7.5.1 DB connection pooling
	7.5.2 Session management

	7.6 Servlet programmming under a microscope
	7.6.1 Using GenericServlet class versus HttpServlet class
	7.6.2 GET/POST processing in servlets
	7.6.3 The init(), service(), and destroy() methods
	7.6.4 Parameters passed by the server

	7.7 Migrating from a CGI base to servlets
	7.7.1 Migration - decisions criteria
	7.7.2 Migration - an approach

	Chapter 8. WebSphere Application Server technology
	8.1 WebSphere Application Server security
	8.1.1 WebSphere Application Server security management
	8.1.2 Realms
	8.1.3 Users
	8.1.4 Groups
	8.1.5 Access control lists
	8.1.6 Resources
	8.1.7 Examples of Security Using HTTP and SSL

	8.2 Enterprise JavaBeans
	8.2.1 EJB Structure

	8.3 Extensible Markup Language (XML)
	8.3.1 XML Parser
	8.3.2 Document Object Model (DOM)
	8.3.3 Simple API for XML (SAX)

	Chapter 9. Servlet design patterns for e-commerce
	9.1 Guiding principles
	9.2 High-level design patterns
	9.2.1 Single function servlets
	9.2.2 Tiered topology
	9.2.3 Separation of processing and display responsibilities

	9.3 Specialized applications
	9.3.1 Personalization
	9.3.2 Asynchronous event processing using threads
	9.3.3 Utilizing an e-commerce event model
	9.3.4 Leveraging the HTTP protocol in servlet-based applications
	9.3.5 Structuring parameter names and values
	9.3.6 Non-cookie-based state maintenance
	9.3.7 Servlet-based cron facility
	9.3.8 Dynamically generated images
	9.3.9 HTML components to aid in JSP processing
	9.3.10 Summary

	Chapter 10. Accessing DB2 data
	10.1 Accessing DB2 data from remote clients over a LAN connection
	10.2 Accessing host or AS/400 DB2 data over a LAN connection
	10.3 Accessing DB2 data from the Web using java

	Chapter 11. Sample Java JDBC programs
	11.1 Script of javaprofile
	11.2 Script of db2profile
	11.3 Java program DB2appProgram1.java
	11.4 Java program DB2netProgram1.java

	Chapter 12. Sample servlets without ConnMgr
	12.1 App DB2 servlet - DB2appServlet1.java
	12.2 Net DB2 servlet - DB2netServlet1.java

	Chapter 13. Sample servlets using ConnMgr
	13.1 App DB2 servlet - DB2appServlet2.java
	13.2 Net DB2 servlet - DB2netServlet2.java

	Appendix A. Installing IBM HTTP Server Beta 3 with SSL
	A.1 IBM HTTP Server
	A.1.1 SSL Protocol
	A.1.2 Install IBM HTTP Server
	A.1.3 Installing global security kit (GSK)
	A.1.4 Install IBM SSL modules

	A.2 Prepare Server Certificate
	A.2.1 Creating a key database
	A.2.2 Create a self-signed certificate

	A.3 Register key database with IBM HTTP Server

	Appendix B. Special notices
	Appendix C. Related resources
	C.1 Redbooks on CD-ROMs
	C.2 Referenced Web sites

	How to get ITSO redbooks
	IBM redbook fax order form

	List of abbreviations
	Index
	ITSO redbook evaluation

