
1

SCO Debugger – Tips and Tricks

Ron Record John Wolfe
rr@sco.com jlw@sco.com

2

Agenda

● Truss
● trace system calls & signals

● Debug
● Command line interface
● Graphical user interface

● Memtool
● catching dynamic memory errors

● SVR5 MALLOC_CHECKS

3

Debugging

truss

4

Truss – trace system calls & signals

● One or many processes
● Optionally follow forked process(es)
● Optionally indicate LWP id of threaded

process(es)

● Asserts control (monitors) process through
/proc file system
● Supports both SVR5 and OSR5 ABI processes

● Selectively display or suppress:
● System Calls, Signals, Machine Faults
● Complete I/O by file descriptor

● Display system call arguments

5

Truss – command format

 truss [-flcaein] [-[tvx] [!] syscall . . .]
 [-s [!] signal . . .] [-m [!] fault . . .]

 [-[rw] [!] fd . . .] [-o outfile] command | -p pid

● -f : follow child processes
● -l : display LWP on threaded programs
● -a : display string arguments to “exec”
● -e : display the ENVIRONMENT passed to

“exec”
● Defaults

● -tall -v!all -x!all -sall -mall -m!fltpage -
r!all -w!all

6

Debugging with debug

7

OpenServer 6 Debugger - debug

● Graphical user interface
● user configurable screen layouts

● command aliases

● Command line interface
● powerful, shell-like command language

● command history, command aliases

● Strong C and C++ symbolic debugging
● step through inline functions, header code, exceptions

● Controls multi-process, multi-threaded apps
● follow forks in both parent and children processes

● Understands ELF/COFF, DWARF I/II executables

8

debug - How to get started

● debug – man page
● help command in the debugger

● help – lists available commands and topics
● help <cmd-topic> - format and details about

specific command or
topic

● Use the on-line/locally installed debugger
doc. “Debugging and analyzing C & C++
Programs”
● Command line and GUI

● Tutorials, explanations, and tips

9

debug - Command Format

1. debug [com_opts] [[-p] [-f all|none|procs] \
[-r] [-l start_loc] cmd_line]

2. debug [com_opts] [-p] [-m path] -c core_file \
[object]

 debug [com_opts] [-p] [-m path] core_file

 com_opts: [-V] [-i c|x] [-X opt] [-d defaults]
[-s path] [-Y[a|g],dir]

10

debug - Concepts

● Debugger variables
● Begins with '%'
● Execution state
● Debugger attributes

● %db_lang and %lang - “C” or “C++”

● %follow – control following of child processes
● “all” or “procs” versus “none”

● %mode – current line editing mode
● “vi” or “emacs”
● Initial setting by VISUAL or EDITOR environment setting

%program %proc %thread %log
%func %file %line %frame
%lastevent %thisevent %eh_object cpu_registers
%list_file %list_line

11

debug - Concepts continued

● Debugger attributes – continued
● %num_lines – default lines printed for list and

dis commands
● %num_bytes – default number of bytes displayed

by dump
● %wait - synchronous or asynchronous command

execution
● Synch. - "foreground", 1 or "yes"
● Asynch. - "background", 0 or "no"

● %thread_change - control behavior on state
changes

● “stop”
● “announce”
● “ignore”

● %global_path - debugger's global search path
● Supplemental source search path

12

debug - Concepts continued

● User defined, debugger maintained
variables
● Begin with a dollar sign - '$'
● Imports shell environment variables at start

up
● Create with set command
● type is “string”

● Converted to integer as needed - strtol()

13

debug - Concepts continued

● proclist – comma-separated list of
procnames

● procnames
● “all” - all controlled processes and threads
● user / debugger generated program name
● debugger process id - p<n>
● debugger thread id - p<n>.<n>
● system process id - integer
● “current” %program, %process or %thread
● user debugger variable with integer process id

14

debug - Concepts continued

● Location
● [thread_id@][object@]address[+-constant]

● [thread_id@][object@][source_file@][header_file@]line

● [thread_id@][object@][source_file@][header_file@]
function[+-constant]

● Qualified identifier
● [thread_id@][source_file@][function@][line_number@]

identifier

● [thread_id@][source_file@][header_file@]identifier

● [thread_id@]frame_number@identifier

● [thread_id@]object_name@[source_file@][header_file@]
identifier

15

debug - Concepts continued

● Expression
● Combination of:

● Variables (program, debugger, user debugger)
● Functions
● Qualified names

● Syntax of “current” language
● Enclose in parens, square brackets or curly

braces
● Begins with '-'
● Contains:

● >, >>, |, ||, &&, #, comma, semi-colon, newline

16

debug - Command Line Interface

● Creating a debug session
● create command – create new process(es)

– create [-dpr] [-f all|none|procs] [-l start_loc]
[cmd_line]

● grab command – grab a running process or
corefile

– grab [-f all|none|procs] [-l load_file]
process_spec

– grab [-p] [-m path] -c corefile [objectfile]
– grab [-p] [-m path] corefile

17

debug - CLI: Process Execution

● Process Execution
● run [-p proclist] [-bfr] [-u location]
● step [-p proclist] [-iobfq] [-c count

]
● next predefined alias for “step -o”

● release [-s] [-p proclist]

● halt [-p proclist]

18

debug - Events

● Stop events
● Break points – function, statement, instruction

address
● Watch point – value in memory changes

● *lvalue

● Expression – logical expression is true-
● (expr)

● Signals - default: monitors every signal
● C++ exceptions - default: every throw

and catch
● System calls
● On Stop event

19

debug - Creating/Managing Events

● Creating stop events
● stop [-p proc_list] [-c count] stop_expr [command]
● stop [-p proc_list]

● aliased as
b

● Managing C++ exception events
● exception -d [-i] {throw|catch}

● set default action henceforth
● exception [-p proclist] [-iq] {throw|catch} [type]

[command]]
● %eh_object – current exception object

20

debug - Creating/Managing Events

● Managing signal actions
● signal -d [-i] [signal ...]

● set default action henceforth
● signal [-p proclist] [-iq] [signal ... [command]]
● signal [-p proclist] -m

● displays signal mask
● cancel [-p proclist] [signal ...]

● cancel delivery of pending signal(s) to
designated proclist

● kill [-p proclist] [signal]
● send signal to designated proclist

21

debug - Creating/Managing Events

● Tracing of system calls
● syscall [-p proclist] [[-eqx] [-c count] call ...

[command]]
● use system call name or number

● help sysnames
● -e on entry
● -x on

exit

● On Stop Events
● onstop [-p proclist] [command]
● NOTE: single stepping constitutes a stop

22

debug - Creating/Managing Events

● events [-p proclist] [event_num ...]
● lists all or the designated

events

● {delete | disable | enable} event_num ...
● delete, disable or enable the specified

events

● enable -a [-p proclist] [event_type]
● delete, disable or enable ALL events of the

specified event type

● change event_num [-p proclist] [-evqx] [-c count]
[throw|catch]

[stop_expr|call...|signal...|
exception_type] [{commands}]

23

debug - Displaying Data & Process Information

● ps [-p proclist]
● list status of controlled threads and processes
● * marks current thread or

process

● stack [-p proclist] [-f frame] [-c count] [-a address] [
-s stack]
● display function call backtrace
● * marks the current frame
● Aliased as

t

● map [-p proclist]
● display virtual address map

24

debug - Displaying Data & Process Information

● List source lines
● list [-p proclist] [-c count]

● list from “current” location
● list next set of lines if repeated

● list [-p proclist] [-c count] qualified_src_location
● function name or source file and line number

● list [-p proclist] [-c count] /regexp/
● list from the next line which matches the

regexp
● list [-p proclist] [-c count] ?regexp?

● Search backwards for the line that matches the
regexp

25

debug - Displaying Data & Process Information

● Display symbol names, values and types
● symbols [-p proclist] [-o object] [-n filename] [-

dfgltuv]
[pattern]

● Print value of an expression
● print [-p proclist] [-f format] [-v] expr, ...

● expr evaluated in “current” language – C or
C++

● format is format string acceptable to C
printf()

● Display the type of an expression
● whatis [-p proclist] expr

26

debug - Displaying Data & Process Information

● Display contents of memory
● dump [-p proclist] [-c byte_count] [-b]

expression

● Disassemble machine instructions
● dis [-p proclist] [-c instr_count] [-ns] [location]

[end_location]

● Display machine registers – general, FP and MMX
● regs [-p proclist]

27

debug - Personal Configuration

● alias command
● define alternate / abbreviated commands
● use to establish dbx-like or gdb-like commands
● build complex, repetitive, conditional command

sequences

● $HOME/.debugrc
● startup debug command script
● establish my_former_debugger-like configuration
● debug … –d <alt_startup> …

● uses specific alternate startup script instead of
default

28

debug - logon / logoff / script

● logon <log_file>
● logs debug commands entered and output to a

file
● generated output appears as comments
● capture complete history
● capture repetitive command sequence

● logoff
● Terminate logging

● script <file>
● reads debug commands from <file>

29

debug - For dbx or gdb users

● dbx users
● Section 3 of the Porting Guide “A Guide to

debug for dbx Users”

● gdb users
● command comparisons from May/June 2000 SCO

World article
● Summary is in the on-line handout

30

Debug – GUI default layout

31

Debugging: Dynamic Memory

memtool

32

memtool - Catching Dynamic Memory
Errors

 [SVR5/UDK ABI only]

● Diagnose dynamic memory allocation errors
● writing beyond a block of memory

● using deallocated blocks

● memory “leaks”

● bad arguments passed to C malloc() or C++ new()

● Does not catch general pointer misuses or writing
outside local or global arrays

● Runs the application under the hidden control of
the debugger and the dynamic C library malloc
runtime checking

33

memtool – Under the covers

diagnostic
outputinternal (two-way)

command-line
communication

debug

memtool

process control

application
process

dynamic
C library

basic diagnostic
information

user
interaction

34

memtool (cont'd)

● Diagnostics include one to three stack traces
● when detected

● when (de)allocated

● previous use (for realloc() or free())

● Erroneously modified block diagnostics include an
annotated memory dump snapshot for the block

● Each diagnostic comes with an explanation – short,
medium, or long (user selectable)

● Application need not be rebuilt or relinked
● debugging (-g flag) provides much better info

35

Debugging: Dynamic Memory

SVR5 - MALLOC_CHECKS

36

MALLOC_CHECKS - SVR5

● Environment variable activated memory
checking in the SVR5 C runtime
● No recompilation needed - dynamic libc.so.1

● MALLOC_CHECKS=<number>
● 1 = basic-fill mode
● 3 = safe-copy mode - duplicate arena block hdrs.
● 5 = added-space mode – allocation padded
● mallinfo() - check arena integrity
● 2, 4, 6 = above with arena check on all malloc calls
● -1, -5 = high memory edge with electric fence
● -3, -7 = low memory edge with electric fence

37

Guidance / Assistance

38

OpenServer 6 Support Resources

● Porting Guide:
● http://www.sco.com/support/docs/openserver/600/po

rting/osr6portingTOC.html

● Upgrade Guide:
● http://www.sco.com/support/docs/openserver/600/up

grade/index.html

● Online Documentation and Late News
● http://www.sco.com/support/docs/openserver/

39

OpenServer 6 Support Resources

● Support Download Page for OpenServer 6:
● http://www.sco.com/support/update/download

/product.php?pfid=12&prid=20

● Tricks on getting OpenServer 5, UnixWare,
SCO Unix and SCO Xenix applications running
on SCO OpenServer 6 – Forum 2006
● http://www.sco.com/2006forum/breakouts/br

eakout/140_Boland_J_tips-tricks.ppt

40

OpenServer 6 Support Resources

● SCO “Legend” Mailing List: Public
● Legend-subscribe@list.sco.com

● legend@sco.com

● Porting/Migration Alias:
● osr5to6@sco.com

● Knowledge base:
● http://wdb1.sco.com/kb/search

