
1

Overview of Developing and Porting
for OSR 6.0.0 and UW 7.1.4

Ron Record John Wolfe
rr@sco.com jlw@sco.com

2

Agenda

● Overview of SCO provided Development
Systems

● Suggested open source tools
● Building open source applications

● Getting Project Source
● Configuration Issues
● GCC-isms
● Operating System Variance
● C++ Issues

3

Review

OpenServer 6.0.0 Development System

4

How OpenServer 6 is Structured

OSR System Libs
/osr5/usr/lib/

OSR System Libs
/osr5/usr/lib/

SVR5/UDK System
Libs /usr/lib/

SVR5/UDK System
Libs /usr/lib/

OpenServer 6 dev tools
/usr/ccs/bin/

OpenServer 6 dev tools
/osr5/usr/ccs/bin/

One OpenServer 6 KernelOne OpenServer 6 Kernel

OSR5 sys callsOSR5 sys calls SVR5 sys callsSVR5 sys calls

OSR
ABI

SVR5/
UDK
ABI

One OpenServer 6 User
Experience

Install, desktop, sys admin, commands

One OpenServer 6 User
Experience

Install, desktop, sys admin, commands

Legacy AppsLegacy Apps Modern AppsModern Apps

5

Application Binary Interface –
What is that?

● What an app looks like at the binary level
● content and layout of information that it presents to

system loaders and linkers (object file format)
● How different modules of an app communicate

● function call conventions
● size and layout of basic data types
● size and layout of compound data types -

structures, unions, bit-fields
● How an app communicates with the OS

● pathnames, sys call numbers, errno’s, ioctl's
● size and layout of basic and aggregate system data

types

6

OpenServer 6 – SVR5 ABI - default

● OpenServer 6 Devsys for SVR5 (UDK) ABI
● OpenServer 6 Devsys using -K udk option

● or - /usr/bin/cc which defaults to –K udk

● use for single certification on UnixWare 7 and
OpenServer 6

● use for modernizing existing OSR5 apps
● use for device driver development (IHVs)
● used to relink the OpenServer 6.0.x SVR5 kernel
● provides access to “NEW” features

● threads and LFS (> 2 Gbyte files)

7

OpenServer 6 – OSR ABI

● OpenServer 6 Devsys for OSR ABI
● OpenServer 6 Devsys using -K osr option

● or /osr5/usr/bin/cc which defaults to –K osr
● set PATH environment variable with /osr5/usr/bin

before /bin, /usr/bin or /usr/ccs/bin

● use for binary compatibility to legacy OSR5 apps
● provides more modern C and C++ compilers

● Standards Conformance (almost) C and C++
● same level of code generation and optimization as in

the SVR5/UDK compilers
● 64-bit “long long”

● NOT available - threads or large files (> 2
Gbytes)

8

Mixing OSR and UDK ABI
Object Files

● No safe way to link OSR5 ABI and SVR5/UDK ABI
relocatable or shared objects (.o/.a/.so)
● no way to intercept different system data types
● no way to intercept different bit-field layouts and

function calling conventions
● no way to intercept system calls from objects

● Linker will reject mixture of objects, by default

● Force link mode provided - “I know what I’m doing”
● but you probably don’t
● not recommended

9

Building Legacy OpenServer 5 Apps

● When is OSR ABI needed?
● when linking with existing OSR5 .o/.a/.so objects

● Use OSR ABI compilers
● same as UDK but with -Kosr for OSR ABI

● modern, reliable, standard, optimizing

● 64-bit “long long” integer available

● LFS, threads and EFT not available

● can accept OSR5 COFF objects as input to linker
● but cannot generate COFF

● can link with existing OSR5 C .o/.a/.so objects
● but cannot link with existing OSR5 C++ objects

● use CC -Xo to compile very old OSR5 C++ sources

10

Want new features but need
compatibility with old OSR5 library?

● If your own, recompile

● If from another ISV, get vendor to provide new,
SVR5 ABI-built libraries

● If neither is possible ...
● make app into 2 processes

● one process calls old lib
● compile -Kosr

● one process uses new features
● compile -Kudk

● use socket, pipe, IPC, etc. to communicate between
processes

11

Guidance on modernizing
existing apps: Threads

● Must modify to use threads
● pthreads API more standard than SVR4/UI threads
● use -Kudk to recompile application
● use -Kpthread when compiling threaded code

● fixes some things like global errno automatically

● Existing OSR5 source may not be thread-
safe!

● may use non-reentrant functions such as strtok()
● use <name>_r() replacements when available

● may store application data globally
● may return pointers to static data
● must study your code

12

Guidance on modernizing
existing apps: Large files

● Go forward with Large File Summit (LFS) APIs
● use -Kudk to recompile application
● create files up to one terabyte in size
● can use size-specific interfaces

● fopen64, lseek64, etc.
● or, can use regular fopen, lseek, etc.

● cc -D_FILE_OFFSET_BITS=64
● off_t, etc. become 64 bits

● must use vxfs filesystem and create filesystem with
largefiles flag
● mkfs or fsadm_vxfs to turn on/off

● ulimit must be set to unlimited

13

Guidance on modernizing existing
apps: Fundamental system types

● Be careful with expanded fundamental
system types (EFT)
● Size change between OSR5 and OSR6 in UDK

mode:
● mode_t, dev_t, uid_t, gid_t, nlink_t, pid_t, ino_t, sigset_t
● typically size goes from 16 bits to 32 bits
● system or app struct’s containing them also change

size
● e.g., struct stat contains both dev_t and ino_t

● dev_t also changes how major, minor numbers packed
● all consequences of SVR5 infusion into OpenServer 6

kernel

● Change should be transparent unless your code
has assumptions about size

14

Guidance on modernizing
existing apps: C++

● Existing OSR5 DevSys C++ compiler is old!
● AT&T Cfront-based, c. 1992, buggy
● predates 1998 ISO language/library standards
● large-scale changes in language since then

● If your sources were developed with it …
● expect they will not compile cleanly now
● source fix-ups are usually straight forward

● you’re doing your code a favor!

● for bad cases try the CC -Xo option
● old library classes will all still be there

15

Guidance on modernizing existing
apps: C++ ABI issues

● C++ ABIs are unique for each compiler
● Exception handling implementation
● Class object layout

● Virtual function table pointer position
● Base class sub-object order

● Virtual function call mechanism
● Virtual function table format
● Use of “thunks”

● Name mangling conventions

● Cannot mix C++ compiler objects
● SCO (USLC) C++ ≠ Cfront C++ ≠ GNU g++

16

Features of the OpenServer 6
Development System

● C Compilation System
● C++ Compilation System
● C/C++ Debugger
● memtool
● fur
● Except where noted, features apply to Dev Sys

used for both SVR5/UDK and OSR ABIs and to UDK
on UW7

● A major upgrade compared to existing (and
outdated) OSR5 Development System product!!

17

The OpenServer 6 -K mode switch

● Compilers
● /usr/ccs/bin/cc defaults to -Kudk
● /osr5/usr/ccs/bin/cc defaults to -Kosr
● “cross-ABI” compiles are allowed

● /usr/ccs/bin/cc -Kosr ...
● /osr5/usr/ccs/bin/cc -Kudk …

● ditto CC for C++ compiles – as & ld also
● Use cc or CC to do linking – links against correct

ABI startup routines.

● Other Dev Sys commands
● have -K osr | udk option if necessary (e.g. lint)
● don’t have option if irrelevant (e.g. lex and yacc)

18

OpenServer 6 C Compiler

● Robust compiler, excellent
IA-32 code generation

● Standards-conforming
libraries and headers

● Profiled versions of libraries

● prof, lprof in both ABIs

● fprof [SVR5/UDK ABI only]

● Standard set of command
line tools, fully
internationalized

● Conformance checking (-Xc)
is against C 90 standard

● Support for Java native
methods [SVR5/UDK ABI
only]

● Almost all of C 99 - ISO/IEC
9899:1999
● inline, restrict, variable

argument macro functions, &
60 other features

● Only things missing:
● variable-length arrays

● complex and imaginary
numbers

● minor variances in snprintf(3S)

● [some new C99 library
functions and headers may
be SVR5/UDK ABI only]

● Option –Xb will disable
inline and restrict

k d

19

OpenServer 6 C++ Compiler

● Accurate, robust
implementation

● Almost all of the C++
standard - ISO/IEC
14882:1998
● except rarely-used:

export keyword,
placement delete,
function-try-blocks, two-
phase template name
binding, multi-byte
characters in source code,
partial specialization of a
class member template

● Complete C++ Std Library
● STL, iostreams, string, locale,

numerics, etc.

● fast and thread-safe

● Excellent IA-32 code
generation

● Exception Handling - high

● performance

● Device driver support

● Thread safety [SVR5/UDK
ABI only]

● Support for Java native
th d [SVR5/UDK ABI l]

20

Basic - Suggested - Optional

Open Source Tools

21

Basic Open Source Tools

● Starter set
● gmake
● autoconf (2.13 and 2.59)
● automake - synched with autoconf
● GNU m4

● Probably will need (at sometime)
● bison
● gawk
● flex

22

Highly Suggested
Open Source Tools

● Depending on personal preferences, project
build or change submission requirements …

● GNU diff
● GNU patch
● CVS – Concurrent Version System
● GNU tar

23

Optional Open Source Tools

● GNU binutils (gas and ld)
● OSR6 assembler

● does not have Willamette SIMD instructions
● Minor differences in SIMD mnemonics

● GNU GCC
● SIMD instructions are in GCC “asm” statements
● Avoid g++ especially for graphics

● C++ ABI issues

● RPM
● Use rpm2cpio to extract and examine spec files

24

Acquiring Open Source Tools

● OpenServer 5.0.7 GNU Development Tools
● After chsysinfo osr5

● Install GNU m4, bison, flex, diff, patch, awk, make, CVS
and configuration creation tools

● DO NOT INSTALL !!!!
● GCC – not dual ABI aware

● - Generates OSR5 ABI code
● Looks in /usr/include for OSR 5 system headers
● Looks in /usr/lib & /usr/ccs/lib for link libraries

● GDB
● - Not SVR5 kernel aware

25

Acquiring Open Source Tools
(continued)

● UDK 7.1.4 OSTools set
● Install individual packages – not the set

 chsysinfo uw7
 pkgadd -d <mnt-pt> GNUm4 GNUautomk \

GNUautocf GNUmake GNUawk GNUbison \
Osflex

● GCC 2.95.3 and GDB are configured for SVR5
● SVR5 /usr/gnu/lib/libstdc++.so.2.10.0

26

Acquiring Open Source Tools
(continued)

● Additional tools or runtime required to build
a project
● Check for availability on Skunkware
● May be part of project source

● Part of the normal build sequence
● May need to be built as a first step

● May move to the front of your project list
● May be optional interface(s)

● Defer / omit now
● Build later and rebuild complete project.

27

Building Open Source Applications

Getting Project Source

28

Getting the Source - From Where ?

● SCO FTP site
● ftp://ftp.sco.com/pub/openserver6/600/opensrc
● ftp://ftp.sco.com/pub/unixware7/714/opensrc
● ftp://ftp.sco.com/pub/openserver5/507/opensrc/source

● SCO Skunkware
● http://www.sco.com/skunkware
● ftp://ftp2.sco.com/pub/skunkware/src/
● ftp://ftp2.sco.com/pub/skunkware/osr6/src/patches/
● ftp://ftp2.sco.com/pub/skunkware/uw7/src/patches/

29

Getting the Source – From Where
(continued)

● Freshmeat web site
● http://freshmeat.net

● FileWatcher web site
● http://filewatcher.org

● Free Software Foundation FTP
● ftp://ftp.gnu.org/gnu

● SUSE Source RPMs FTP site
● ftp://ftp.suse.com/pub/suse/i386/update/<version>/rpm/src/

● SourceForge web site
● http://sourceforge.net

30

Source Formats

● Varying Source release formats – choice of
project maintainers
● tar or cpio file archives

● Often compressed – GNU gzip or bzip2

● zip archive files
● cvs or svn repository on project hosted

site
● Linux source RPMs

● Good source for recent patches
● Spec file can provide configuration guidance

● Start with patches from the last release

31

Managing Source & Build
Changes

● Important to track ALL changes
● Avoid reinventing the wheel
● Probably need most, if not all, changes in next

release
● Help others in the SCO community to customize

to their needs
● Ultimately to contribute source, build and

config. changes back to the open source
community

● Others can reproduce problems and provide
solutions or workarounds

32

Source Changes
(continued)

● Preserve the original source file
● Do not over-write previously saved originals

 mv [file] [file].orig # preserve orig file date
 cp [file].orig [file] # modified – today’s date
 chmod uw+w [file]

● Create empty “original” for every “new” file

 touch [file].orig

33

Source Changes
(continued)

● Use context or unified diff to capture
changes

 cd [TOP_OF_SRC_TREE]

 for i in `find . –name ‘*.orig’`; do
 echo $i
 diff [-c|-u] $i ${i%.orig}
 done > [project]_cumulative_patch.[date]

● Context or unified diff not applicable to
non-text files
● .jar, compressed data, binaries, .jpeg, .pdf, etc.
● Copy/replace entirely

34

Source Changes - Build Afresh

● Some open-source projects are configurable
for separate source and object directories

● Makefile design/implementation
● Blow away the object directory and make again

● Reconstruct project source
● Unwind source into “clean” directory

 cd [TOP_OF_SRC_TREE]
 gzcat [compressed_tar_archive] | tar -xf -

● Reapply cumulative patches
 patch -b –p0 < [project]+cumulative_patch.[date] \
 2>&1 | tee log.patch

35

Source Changes - Using
Previous Patches

● Prev. release patches may not apply
cleanly
● Source code changes in area of your patch
● Some changes bought-back into project source
● Project source restructure

● Unapplied patches written to [file].rej
● Review rejections – rework as needed

 find . -name '*.rej'

36

Building Open Source Applications

Configuration Issues

37

config.guess

● 2001 submitted UW7 changes to FSF to
standardize SVR5 triplet
● Handled OpenUNIX 8

● i?86:*:5:[78]*

● You may need to update for OSR 6.0.0
● i?86:*:5:[678]*

● Produces triplet
● i?86-unknown-sysv5<OS name><version>

38

Configure Script's
Triplet Override

● preset HOST / TARGET / BUILD

● SVR5 ABI
● i586-sco-sysv5

● OSR5 ABI
● i586-sco-sco3.2v5.0.7
● add -Kosr to CFLAGS, CXXFLAGS, LDFLAGS

● or set PATH for OSR5 ABI preference

39

Configure Scripts

● Override default use of gcc, if installed
● CC=“cc”
● CPP=“$CC –E”
● CXX=“CC”
● RANLIB=true

● Use cc or CC to do the linking
● Avoid use of compilation or linking options

that specify default header or library paths
● Avoid -I/usr/include –I/usr/include/sys
● Avoid -L/usr lib -L/usr/ccs/lib

40

Absence of config.guess

● configure and configure.in use uname
● SCO_SV typically configures for

OpenServer 5
● Correct if using OSR5 ABI
● Unable to handle LFS files

● Resolution – recognize SCO_SV and
release 5 as OpenServer 6.0.0 and
force selection of SVR5
● Hand edit the configure script

● or
● Modify autoconf/aclocal.m4

● Rerun autoconf to regenerate an updated
configure

41

scoutils

 ftp://ftp2.sco.com/pub/skunkware/osr6/vols/scoutils-1.3Sc-VOLS.cpio

● Shell script frontends
● Configure & build open-source

● /usr/bin/Configure, /usr/bin/Build & /usr/bin/Prep

● Project source at:
● /usr/src/sco/<category>/<project>-<version>.tar.bz2

● Project patch at:
● /usr/src/sco/patches/<project>-<version>-osr6.patch

● cd /usr/src/sco/<category>
● Build <project>

42

Scoutils (continued)

● Build
● Extracts source
● Applies patch
● Run

● <project>-<version>/Configure-OSR6, if it exists
● /usr/bin/Configure, otherwise

● Then run
● <project>-<version>/Build-OSR6, if it exists
● GNU make , otherwise

43

Building Open Source Applications

GCC-isms

44

Need information about gcc
extensions?

● Check the gcc information provided in
earlier ports
● OSTools – UW 7.1.4
● GNUTool Chain – OSR 5.0.7
● /usr/gnu/bin/info gcc

● Select “C extensions”

45

GCC-isms: VarArg
Macro Functions

● GCC provided early VarArg Macro Functions
 #define eprintf(format, args…) \
 fprintf(stderr, format, ##args)

● Supported ISO/IEC 9899 Standard feature
 #define eprintf(format, …) \
 fprintf(stderr, format, __VA_ARGS__)

● Condition the change
 #ifdef __USLC__
 …ISO format
 #else
 …GNU format
 #endif

46

GCC-isms:
return <void expression>

● GCC accepts:
 void bar() { return;}

 void foo() {
 return bar();
 }

● To be ISO compliant, change to:
 void foo() {
 bar();
 return;
 }

47

GCC-isms: inline C functions

● GCC supported “inline” C functions
● Treat function as statement expression at point

of call

● ISO/IEC 9899 added “inline” C funtions
● Supported on OSR 6.0.0 and UW 7.1.4
● Designed to work with C++ “inline” in common

headers
● Requires 1 and only 1 external definition

generated
● If in module source file, probably not an issue
● Potential PROBLEM if in a header file

● Suppress “inline” keyword during configuration
CC=“cc –Xb”

48

GCC-isms:
statement expressions

● Compound statement in parentheses
● Probably encountered in #define
 #define maxint(a,b) \
 ({int _a = (a), _b = (b); _a > _b ? _a : _b; })

● If in a header file, conditionally replace with C
static function

 static int maxint(a,b) {
 return (a > b ? a : b);
 }

49

GCC-isms: __attribute__

● Functions – specify side-effects
● Variables – packed, aligned, section, weak
● Types – packed, aligned
● Format – in declarations or definitions

● __attribute__((<attr_name>[(<arg>)]))

● Change needed:
● Conditionally remove attribute modifier
● Use, as appropriate:

● #pragma pack(<n>)
● #pragma weak <id1> [= <id2>]

50

GCC-isms: Enhanced Asms

● Feature is generally “unique” to each
compiler

● Used for:
● Better or specialized optimization/performance
● Access to hardware registers/instructions not

typically utilized by the C/C++ code generator

● With exception to Willamette SIMD instr.
● Recode to SCO Enhanced ASM Function

● Prototyped as function Called as a function
● Follow i386 calling convention

● Preserve user and stack registers – edi, esi, ebx, ebp, esp
● Return values in eax (edx) or fp0

51

GCC-isms: Enhanced Asms
(continued)

● OSR 6.0.0 Documentation
● Software Development

● Programming in C and C++
● Enhanced ASM facility

 asm [type] identifier ([param-list]) {
 [storage-mode-spec-line
 asm-body] +
 }

 storage-mode-spec-line:
 % [storage-mode [identifier [, identifier

]*];]+

52

GCC-isms: Enhanced Asms
(continued)

● Enable optimization of function calling ASM
function by:
 #pragma partial_optimization <identifier>

● If and only if:
● Followed calling and register conventions
● Register %ebp has not been modified
● Register %esp not modified with movl
● No branch into or out of ASM function
● auto or param only modified if address of

variable is passed to ASM function
● Auto or param accessed if passed by name or

address to ASM function

53

GCC-isms: no equivalents
(at present)

● Extended ASMs with Willamette SIMD
● Use GCC or separate assembly source compiled

with GNU assembler

● Variable Length Arrays
● Local can be recoded using alloca() at function

entry

54

GCC-isms: Command Line

● Delete -Wall and other GCC -W arguments
from configure/configure.in/Makefile.in

● Replace -shared with -G
● Replace -Wl,-soname with -Wl,-h
● Replace -fpic with -Kpic
● Check any -f arguments

55

Building Open Source Applications

Operating System Variance

56

Operating System Variance

#if defined(__USLC__)
#define __FUNCTION__ __func__
#endif

#if defined(__USLC__)
#include <heimdal/roken/ifaddrs.h>

#else
#include <ifaddrs.h>

#endif
And add -lroken to LIBS

57

OS Variance (continued)

●Sometimes need to add -lgetopt -lsocket -lnsl
... to LIBS
●Use scoutils libsym script to find location of
unresolved symbols
●Use scoutils findinc script to find location of
structures etc in header files. For example,
<sys/sockio.h> contains #defines for SIO...
whereas these may be defined elsewhere on
Linux (e.g. <linux/sockios.h>)
●When linking with -lpcap add -lresmgr

58

Operating System Variance

Track down differences in names for type
declarations and structure entry names.

#ifdef __USLC__
#ifndef __s32
#define __s32 int32_t
#endif // __s32
#ifndef __u32
#define __u32 u_int32_t
#endif // __u32
#endif // __USLC__

59

Building Open Source Applications

C++ Issues

60

Template Instantiation

● Different behavior GNU g++ and SCO C++
● Can present problems in compilation or linking

● GNU g++
● Instantiates all possibly needed templates in

each object file
● Separately named .text sections

● GNU collect2/ld eliminates “duplicates” when
linking

61

Template Instantiation
(continued)

● SCO (USLC) – “implicit instantiation”
● C++ compiler determines where/when templates are

instantiated
● At “link” time - When collected into .so, a.out or .a
● Use CC command to do the linking

● Implementation
● Template declaration in xxxx.h
● Template definition in xxxx.c – same directory as xxxx.h
● Auxiliary files – created by compiler

● source.ti & source.ii (where .o created)
● Info to recompile
● Templates visible and to be instantiated in that .o

● C++ compiler implicitly includes xxxx.c for needed
template in xxxx.h

62

Template Instantiation
(continued)

● Non “implicit” source construction
● Declaration and definition in header file

● Similarly named .c file visible
● Probably related in functionality since same name
● Contains non-template class/function definitions

● If .c file is implicitly included in multiple .o
● Multiply-defined errors at link time

● Header also contains non-template class/function
definitions

● Multiple definitions if headers used by more than single .o

● Solution: use preprocessor defines to control
visibility of non-template definitions

63

Template Instantiation
(continued)

● C++ templates & archives
● Object file is now disassociated from .ti & .ii

● Cannot recompile to get “needed” instantiation
● ERROR: - undefined template function later in the build

● “needed” templates must be resolved prior to
adding to archive

 CC –Tprelink_objects $(OBJS)
 ar <options> <archive_file> $(OBJS)

64

Friend Name Injection Change

● Slight scoping change in the 1998 C++
Standard
● Previously “friend” name was injected in the

enclosing scope
● If file scope, became friend to everyone

● Pre-GCC 3.x code may run into this
● Most has probably been updated over the last 4 years

65

C++ variadic macro definitions

● Variadic macro definitions of the form:

 #define PRT(buf, format, ...) \
snprintf(buf, sizeof(buf), format, __VA_ARGS__)

● Not currently part of ANSI/ISO C++ Standard

● To accept this extension, use the C++ compilation
option

 -Wf,--variadic_macro

66

Guidance / Assistance

67

OpenServer 6 Support Resources

● Porting Guide:
● http://www.sco.com/support/docs/openserver/

600/porting/osr6portingTOC.html

● Upgrade Guide:
● http://www.sco.com/support/docs/openserver/

600/upgrade/index.html

● Online Documentation and Late News
● http://www.sco.com/support/docs/openserver/

68

OpenServer 6 Support Resources

● Support Download Page for OpenServer 6:
● http://www.sco.com/support/update/download

/product.php?pfid=12&prid=20

● Tricks on getting OpenServer 5, UnixWare,
SCO Unix and SCO Xenix applications
running on SCO OpenServer 6 – Forum
2006
● http://www.sco.com/2006forum/breakout

s/breakout/140_Boland_J_tips-tricks.ppt

69

OpenServer 6 Support Resources

● SCO “Legend” Mailing List: Public
● Legend-subscribe@list.sco.com
● legend@sco.com

● Porting/Migration Alias:
● osr5to6@sco.com

● Knowledge base:
● http://wdb1.sco.com/kb/search

